Saturday, July 30, 2011

More about MMS, How to make MMS




On The Mechanisms Of Toxicity Of Chlorine Oxides Against Malarial Parasites - An Overview

By Thomas Lee Hesselink, MD
Copyright September 6, 2007

  • The purpose of this article is to propose research.
  • Nothing in this article is intended as medical advice.
  • No claims, promises nor guarantees are made.

ABSTRACT

Sodium chlorite (NaClO2) can be acidified as a convenient method to produce chlorine dioxide (ClO2) which is a strong oxidant and a potent disinfectant. A protocol has been developed whereby a solution of these compounds can be taken orally. This procedure rapidly eliminates malaria and other infectious agents in only one dose. Chlorine dioxide (ClO2) is highly reactive with thiols, polyamines, purines, certain amino acids and iron, all of which are necessary for the growth and survival of pathogenic microbes. Properly dosed this new treatment is tolerable orally with only transient side effects. More research to better document efficacy in malaria and in other infections is urgently called for.

DISCOVERY

Jim Humble, a modern gold prospecting geologist, needed to travel to malaria infested areas numerous times. He or his coworkers would on occassion contract malaria. At times access to modern medical treatment was absolutely unavailable. Under such dire circumstances it was found that a solution useful to sanitize drinking water was also effective to treat malaria if diluted and taken orally. [1a] Despite no formal medical training Mr. Humble had the innate wisdom to experiment with various dosage and administration techniques. Out of such necessity was invented an easy to use treatment for malaria which was found rapidly effective in almost all cases. [1b,1c]

References:

1a. Water disinfection for international and 
wilderness travelers. 
Backer H 
Clin Infect Dis. 2002 Feb 1;34(3):355-64 

1b. A Possible Solution to the Malaria Problem?
Humble J 
Libertarian Times, May 9, 2005 

1c. The Miracle Mineral Supplement of the 21st Century. 
Humble JV 
www.miraclemineral.org, 2nd Edition (2007) 

MATERIALS AND METHODS

The procedure as used by Mr. Humble follows: A 28% stock solution of 80% (technical grade) sodium chlorite (NaClO2) is prepared. The remaining 20% is a mixture of the usual excipients necessary in the manufacture and stabilization of sodium chlorite powder or flake. Such are mostly sodium chloride (NaCl) ~19%, sodium hydroxide (NaOH) <1%, and sodium chlorate (NaClO3) <1%. The actual sodium chlorite present is therefore 22.4%. Using a medium caliber dropper (25 drops per cc), the usual administered dose per treatment is 6 to 15 drops. In terms of milligrams of sodium chlorite, this calculates out to 9mg per drop or 54mg to 135mg per treatment. Effectiveness is enhanced, if prior to administration the selected drops are premixed with 2.5 to 5 cc of table vinegar or lime juice or 5-10% citric acid and allowed to react for 3 minutes. The resultant solution is always mixed into a glass of water or apple juice and taken orally. The carboxylic acids neutralize the sodium hydroxide and at the same time convert a small portion of the chlorite (ClO2-) to its conjugate acid known as chlorous acid (HClO2). Under such conditions the chlorous acid will oxidize other chlorite anions and gradually produce chlorine dioxide (ClO2). Chlorine dioxide appears in solution as a yellow tint which smells exactly like elemental chlorine (Cl2). The above described procedure can be repeated a few hours later if necessary. Considerably lower dosing should be applied in children or in emaciated individuals scaled down according to size or weight. The diluted solution can be taken without food to enhance effectiveness but this often causes nausea. Drinking extra water usually relieves this. Nausea is less likely to occur if food is present in the stomach. Starchy food is preferable to protein as protein quenches chlorine dioxide. Significant amounts of vitamin C (ascorbic acid) must not be present at any point in the mixtures or else this will quench the chlorine dioxide (ClO2) and render it ineffective. For the same reason antioxidant supplements should not be taken on the day of treatment. Other side effects reported are transient vomiting, diarrhea, headache, dizziness, lethargy or malaise. [2a,2b]

References:

2a. The Miracle Mineral Supplement of the 21st Century. 
Humble JV 
www.miraclemineral.org, 2nd Edition (2007) 

2b. personal communications from Mr. Jim Humble 2007 

EXPLORING BENEFITS

I first learned of Jim Humble's remarkable discovery in the fall of 2006. That sodium chlorite or chlorine dioxide could kill parasites in vivo seemed immediately reasonable to me at the onset. It is well known that many disease causing organisms are sensitive to oxidants. Various compounds classifiable as oxides of chlorine such as sodium hypochlorite and chlorine dioxide are already widely used as disinfectants. What is novel and exciting here is that Mr. Humble's technique seems: 1) easy to use, 2) rapidly acting, 3) successful, 4) apparently lacking in toxicity, and 5) affordable. If this treatment continues to prove effective, it could be used to help rid the world of one of the most devasting of all known plagues. [3a,3b,3c,3d,3e] Especially moving in me is the empathy I feel for anyone with a debilitating febrile illness. I cannot forget how horrible I feel whenever I have caught influenza. How much more miserable it must be to suffer like that again and again every 2 to 3 days as happens in malaria. Millions of people suffer this way year round. 1 to 3 million die from malaria every year mostly children. Thus motivated I sought to learn all I could about the chemistry of the oxides of chlorine. [4a-4hh] I wanted to understand their probable mechanisms of toxicity towards the causative agents of malaria (Plasmodium species). I wanted to check available literature pertaining to issues of safety or risk in human use.

References:

3a. Current status of malaria control. 
Tripathi RP, Mishra RC, Dwivedi N, Tewari N, Verma SS 
Curr Med Chem. 2005;12(22):2643-59 

3b. Current status and progresses made in malaria chemotherapy.
Linares GE, Rodriguez JB 
Curr Med Chem. 2007;14(3):289-314 

3c. [various articles] 
JAMA May23/30,2007 297(20) 

3d. Malaria - Stopping a Global Killer. 
Bedlam in the Blood - Malaria. 
Finkel M, Stanmeyer J 
National Geographic, Jul 2007, pp32-67 

3e. An overview of chemotherapeutic targets 
for antimalarial drug discovery. 
Olliaro PL, Yuthavong Y 
Pharmacol Ther. 1999 Feb;81(2):91-110 

4a. Chlorine Oxygen Acids and Salts: Chlorine Dioxide. 
Robson HL 
Kirk-Othmer Encyclopedia of Chemical Technology, Vol 5, 
John Wiley & Sons, Inc. 2nd Ed. 1964 pp35-50 

4b. The Chemistry of Chlorine Dioxide. 
Gordon G, Kieffer RG, Rosenblatt DH 
Progress in Inorganic Chemistry, Vol 15, 
John Wiley & Sons, Inc. 1972 pp 201-286 

4c. From Laboratory Curiosity to Heavy Chemical. 
Rapson WH 
Chemistry in Canada, 18:25-31, 1966 

4d. Chlorine Dioxide: Chemical and Physical Properties. 
Rosenblatt DH pp 332-343 in: 
Ozone/Chlorine Dioxide Oxidation Products of Organic Materials. 
Rice RG, Cotruvo JA editors, 
International Ozone Institute & USEPA, 
Ozone Press International, 1978 

4e. Chlorine Dioxide: An Overview of its Preparation, 
Properties and Uses 
Gall RJ pp 356-382 in: 
Ozone/Chlorine Dioxide Oxidation Products of Organic Materials. 
Rice RG, Cotruvo JA editors, 
International Ozone Institute & USEPA, 
Ozone Press International, 1978 

4f. Inorganic Chemistry. 
Thorne PCL, Roberts ER 
pp 368-371, 386-388 
Interscience Publishers, Inc. 1949 

4g. Introduction To Advanced Inorganic Chemistry. 
Durrant PJ, Durrant B 
pp 937-942 
John Wiley & Sons, Inc. 

4h. Advanced Inorganic Chemistry - A Comprehensive Text. 
Cotton FA, Wilkinson G 
pp 473-478 
Interscience Publishers, 

4i. Introduction to Inorganic Chemistry. 
Brown GI 
pp 292-295 
Longman 

4j. Inorganic Chemistry An Advanced Textbook. 
Moeller T 
pp 432-433,438-443 
John Wiley & Sons, Inc. 

4k. Inorganic Chemistry A Guide To Advanced Study. 3rd Ed. 
Heslop RB, Robinson PL 
pp 528-533 
Elsevier Publishing Company, 1967, 

4L. Concepts and Models of Inorganic Chemistry. 
Douglas BE, McDaniel DH 
pp 191-192 
Blaisdell Publishing Company 

4m. Encyclopedia of Science and Technology. 
article regarding "chlorine" 
p 99 
McGraw-Hill 

4n. The Chemical Elements And Their Compounds. Volume II. 
Sidgwick NV 
pp 1202-1207, 1224-1225
Oxford At The Clarendon Press 

4o. Van Nostrand's Encyclopedia of Chemistry. 5th Edition. 
Considine GD 
article regarding "chlorine" 
pp 371-372 
Wiley-Interscience 

4p. Inorganic Chemistry 
Sharpe AG 
pp 419-423 
Longman Scientific & Technical 

4q. Concise Inorganic Chemistry. 4th Edition. 
Lee JD 
pp 609-620 
Chapman & Hall 

4r. Comparative Inorganic Chemistry. 3rd Edition. 
Moody B 
pp 409-411,416,433-439 
Edward Arnold 

4s. The Chemistry of the Non-Metals 
Jolly WL 
pp 38-40 
Prentice-Hall, Inc. 

4t. Alternative Disinfectants and Oxidants 
EPA Guidance Manual, April 1999, 
4.1 Chlorine Dioxide Chemistry, pp 4-1 to 4-13 

4u. Oxidation of Formaldehyde by Chlorite 
in Basic and Slightly Acidic Media. 
Chinake C, Olojo O, Simoyi RH 
J Phys Chem A, 102 (3), 606-611, 1998 

4v. General-Acid-Catalyzed Reactions of Hypochlorous Acid 
and Acetyl Hypochlorite with Chlorite Ion. 
Zhongjiang Jia, Dale W. Margerum,* and Joseph S. Francisco 
Department of Chemistry, Purdue University, West Lafayette, 
Indiana 47907 Received December 28, 1999 

4w. Disproportionation of Chlorous Acid at a Strong Acidity. 
Ni Y, Yin G 
Ind Eng Chem Res, 1998, 37(6):2367-2372 

4x. Kinetics and mechanism of chloride based chlorine 
dioxide generation process from acidic sodium chlorate. 
Deshwal BR, Lee HK 
J Hazard Mater. 2004 May 20;108(3):173-82 

4y. New pathways for chlorine dioxide decomposition 
in basic solution. 
Odeh IN, Francisco JS, Margerum DW 
Inorg Chem. 2002 Dec 2;41(24):6500-6 

4z. Kinetics and mechanisms of aqueous chlorine reactions 
with chlorite ion in the presence of chloride ion and 
acetic acid/acetate buffer. 
Nicoson JS, Margerum DW 
Inorg Chem. 2002 Jan 28;41(2):342-7 

4aa. Kinetics and mechanism of catalytic decomposition and 
oxidation of chlorine dioxide by the hypochlorite ion.
Csordy V, Bubnis B, FyyI, Gordon G 
Inorg Chem. 2001 Apr 9;40(8):1833-6 

4bb. General-acid-catalyzed reactions of hypochlorous acid 
and acetyl hypochlorite with chlorite ion. 
Jia Z, Margerum DW, Francisco JS 
Inorg Chem. 2000 Jun 12;39(12):2614-20 

4cc. Mechanism of Chlorine Dioxide and Chlorate Ion Formation 
from the Reaction of Hypobromous Acid and Chlorite Ion.
Furman CS, Margerum DW 
Inorg Chem. 1998 Aug 24;37(17):4321-4327 

4dd. The Three-Electron Bond in Chlorine Dioxide. 
Brockway LO 
Proc Natl Acad Sci U S A. 1933 Mar;19(3):303-7 

4ee. Toxicological Review of Chlorine Dioxide and Chlorite. 
Integrated Risk Information System, 
EPA/635/R-00/007, September 2000 

4ff. Toxicological Profile for Chlorine Dioxide and Chlorite. 
Agency for Toxic Substances and Disease Registry, 
US Dept. Health and Human Services, September 2004 

4gg. Technical note the pattern of ClO2 stabilized 
by Na2CO3/H2O2. 
Junli H, Lihua C, Zhenye Z 
Water Res. 2001 Jul;35(10):2570-3 

4hh. Control effects of p(epsilon) and pH on the 
generation and stability of chlorine dioxide. 
Pei YS, Wu XQ, Luan ZK, Wang T 
J Environ Sci (China). 2003 Sep;15(5):680-4 

OXIDANTS AS PHYSIOLOGIC AGENTS

Oxidants are atoms or molecules which take up electrons. Reductants are atoms or molecules which donate electrons to oxidants. I was already very familiar with most of the medicinally useful oxidants. I had taught at numerous seminars on their use and explained their mechanisms of action on the biochemical level. Examples are: hydrogen peroxide, zinc peroxide, various quinones, various glyoxals, ozone, ultraviolet light, hyperbaric oxygen, benzoyl peroxide, anodes, artemisinin, methylene blue, allicin, iodine and permanganate. Some work has been done using dilute solutions of sodium chlorite internally to treat fungal infections, chronic fatigue, and cancer; however, little has been published in that regard. [5a-5h]Low dose oxidant exposure to living red blood cells induces a change in oxyhemoglobin (Hb-O2) activity so that more oxygen (O2) is released to tissues throughout the body. [6a-6d] Hyperbaric oxygenation (oxygen under pressure) is: 1) a powerful detoxifier against carbon monoxide; 2) a powerful support for natural healing in burns, crush injuries, and ischemic strokes; and 3) an effective aid to treat most bacterial infections. [7a-7d]
Taken internally, intermittently and in low doses many oxidants have been found to be powerful immune stimulants. Sodium chlorite acidified with lactic acid as in the product "WF10" has similarly been shown to modulate immune activation. Exposure of live blood to ultraviolet light also has immune enhancing effects. These treatments work through a natural physiologic trigger mechanism, which induces peripheral white blood cells to express and to release cytokines. These cytokines serve as a control system to down-regulate allergic reactions and as an alarm system to increase cellular attack against pathogens. [8a-8v]
Activated cells of the immune system naturally produce strong oxidants as part of the inflammatory process at sites of infection or cancer to rid the body of these diseases. Examples are: superoxide (*OO-), hydrogen peroxide (H2O2), hydroxyl radical (HO*), singlet oxygen (O=O) and ozone (O3). [9a-9v] Another is peroxynitrate (-OONO) the coupled product of superoxide (*OO-) and nitric oxide (*NO) radicals. [10a-10h] Yet another is hypochlorous acid (HOCl) the conjugate acid of sodium hypochlorite (NaClO). [11a,11b,11c] The immune system uses these oxidants to attack various parasites. [12a,12b,12c]

References:

5a. O2xygen Therapies - A New Way Of Approching Disease. 
McCabe E, 1988, 
Energy Publication 

5b. Oxygen Healing Therapies - For Optimum Health And Vitality, 
Altman N, 1995, 
Healing Arts Press 

5c. The Use Of Ozone In Medicine, 
Rilling S, Viebahn R, (1985/1987/1994) 
Haug Publishers 

5d. Biologically Closed Electric Circuits, 
Nordenstrom BEW, 1983, 
Nordic Medical Publications 

5e. Regional Intra-Arterial Hydrogen Peroxide Infusion And 
Irradiation In The Treatment Of Head And Neck Malignancies: 
A Progress Report. 
Mallams JT, Balla GA, Finney JW 
Trans Am Acad Ophthalmol Otolaryngol, 1963, Jul-Aug, 67:546-53 

5f. War Against Microbes. 
Bradford Research Institute 
The Choice 28(2), 2001 

5g. Chronic Fatigue Syndrome. 
Rodriguez R 
Consumer Health Organization of Canada. 1994 Apr;17(4) 

5h. O2O2O2 - Oxygen Oxygen Oxygen - 
Hydrogen Peroxide Magnesium Peroxide Chlorine Peroxide. 
Donsbach KW, 1991, 
Wholistic Publications 

6a. Decreased level of 2,3-diphosphoglycerate and 
alteration of structural integrity in erythrocytes 
infected with Plasmodium falciparum in vitro. 
Dubey ML, Hegde R, Ganguly NK, Mahajan RC 
Mol Cell Biochem. 2003 Apr;246(1-2):137-41 

6b. Changes in haemoglobin binding curve and oxygen 
transport in chronic hypoxic lung disease. 
Flenley DC, Fairweather LJ, Cooke NJ, Kirby BJ 
Br Med J. 1975 Mar 15;1(5958):602-4 

6c. Glycolysis in human erythrocytes containing elevated 
concentrations of 2, 3-P2-glycerate. 
Duhm J 
Biochim Biophys Acta. 1975 Mar 14;385(1):68-80 

6d. Oxygen-hemoglobulin dissociation curves: 
effect of inherited enzyme defects of the red cell. 
Delivoria-Papadopoulos M, Oski FA, Gottlieb AJ 
Science. 1969 Aug 8;165(893):601-2 

7a. Hyperbaric oxygen therapy: 
using HBO therapy to increase circulation, 
repair damaged tissue, fight infection, save limbs, 
relieve pain, and more. 
Neubauer RA, Walker M 
Avery Publishing Group, Garden City Park, NY (1998) 

7b. Textbook of Hyperbaric Medicine. 
Jain KK, Neubauer RA, et al 
Hogrefe & Huber Publishing, (October 2004) 

7c. The Oxygen Revolution - Hyperbaric Oxygen Therapy: 
the Groundbreaking New Treatment for: ... 
Harch P, McCullough V, Duncan WA 
Hatherleigh Press, (April 24, 2007) 

7d. Hyperbaric Medicine Practice. 
Kindwall EP, Whelan HT 
Best Publishing Company, Flagstaff, AZ (1999) 

8a. Survival Factor in Neoplastic and Viral Diseases. 
Koch WF, 1961, Rio De Janeiro, Brazil, 
Vanderkloot Press, Detroit, Michigan 

8b. Hydrogen Peroxide Medical Miracle. 
Douglass WC, 1996, 
Second Opinion Publ Inc, Atlanta, GA 

8c. Influenzal Pneumonia: 
The Intravenous Injection Of Hydrogen Peroxide. 
Oliver TH, Cantar BC, Murphy DV 
The Lancet, 02-21-1920, pp 432-433 

8d. Chlorite-hemoprotein interaction as key role for the 
pharmacological activity of the chlorite-based drug WF10. 
Schempp H, Reim M, Dornisch K, Elstner EF 
Arzneimittelforschung. 2001;51(7):554-62 

8e. Differential effects on innate versus 
adaptive immune responses by WF10. 
Giese T, McGrath MS, Stumm S, Schempp H, Elstner E, 
Meuer SC 
Cell Immunol. 2004 Jun;229(2):149-58 

8f. Development of WF10, a novel macrophage-regulating agent. 
McGrath MS, Kahn JO, Herndier BG 
Curr Opin Investig Drugs. 2002 Mar;3(3):365-73 

8g. Balanced macrophage activation hypothesis: 
a biological model for development of drugs targeted 
at macrophage functional states. 
McGrath MS, Kodelja V 
Pathobiology. 1999;67(5-6):277-81 

8h. Randomized, double-blind, placebo-controlled trial 
of the immune modulator WF10 in patients with advanced AIDS. 
Raffanti SP, Schaffner W, Federspiel CF, Blackwell RB, 
Ching OA, Kuhne FW 
Infection. 1998 Jul-Aug;26(4):202-7 

8i. Into the Light. 
Douglass WC, 1997, 
Second Opinion Publishing Inc, Atlanta, GA 

8j. Redox regulation of NF-kappa B activation. 
Flohe L, Brigelius-Flohe R, Saliou C, Traber MG, Packer L 
Free Radic Biol Med 1997;22(6):1115-26 

8k. The role of nuclear factor-kappa B in cytokine gene 
regulation. 
Blackwell TS, Christman JW 
Am J Respir Cell Mol Biol 1997 Jul;17(1):3-9 

8L. Transcription factors as activators of gene transcription: 
AP-1 and NF-kappa B. 
Adcock IM 
Monaldi Arch Chest Dis 1997 Apr;52(2):178-86 

8m. Regulation of the transcription factors NF-kappa B and 
AP-1 by redox changes. 
Meyer M, Pahl HL, Baeuerle PA 
Chem Biol Interact 1994 Jun;91(2-3):91-100 

8n. Modulation of transcription factor NF-kappa B binding 
activity by oxidation-reduction in vitro. 
Toledano MB, Leonard WJ 
Proc Natl Acad Sci U S A 1991 May 15;88(10):4328-32 

8o. Distinct effects of glutathione disulphide on the nuclear 
transcription factor kappa B and the activator protein-1. 
Galter D, Mihm S, Droge W 
Eur J Biochem 1994 Apr 15;221(2):639-48 

8p. Nuclear factor kappa B: an oxidative stress-responsive 
transcription factor of eukaryotic cells (a review). 
Schreck R, Albermann K, Baeuerle PA 
Free Radic Res Commun 1992;17(4):221-37 

8q. Functions of glutathione and glutathione disulfide 
in immunology and immunopathology. 
Droge W, Schulze-Osthoff K, Mihm S, Galter D, et al 
FASEB J 1994 Nov;8(14):1131-8 

8r. Modulation of monocyte chemokine production 
and nuclear factor kappa B activity by oxidants. 
Lee JS, Kahlon SS, Culbreth R, Cooper AD 
J Interferon Cytokine Res 1999 Jul;19(7):761-7B 

8s. Intracellular glutathione redox status modulates MCP-1 
expression in pulmonary granulomatous vasculitis. 
Desai A, Huang X, Warren JS 
Lab Invest 1999 Jul;79(7):837-47 

8t. Nuclear factor kappa B: a pivotal role in the systemic 
inflammatory response syndrome and new target for therapy. 
Christman JW, Lancaster LH, Blackwell TS 
Intensive Care Med 1998 Nov;24(11):1131-8 
Comment in: Intensive Care Med 1998 Nov;24(11):1129-30 

8u. Differential regulation of extracellular signal-regulated 
kinase and nuclear factor-kappa B signal transduction pathways 
by hydrogen peroxide and tumor necrosis factor. 
Milligan SA, Owens MW, Grisham MB 
Arch Biochem Biophys 1998 Apr 15;352(2):255-62 

8v. Hydrogen peroxide as a potent activator 
of T lymphocyte functions. 
Los M, Dröge W, Stricker K, Baeuerle PA, Schulze-Osthoff K 
Eur J Immunol 1995 Jan; 25(1):159-65 

9a. Hydrogen Peroxide in Human Blood. 
Varma SD, Devamanoharan PS 
Free Radic Res Commun. 1991;14(2):125-31 

9b. Histochemical demonstration of hydrogen peroxide 
production by leukocytes in fixed-frozen tissue sections 
of inflammatory lesions. 
Dannenberg AM Jr, Schofield BH, Rao JB, Dinh TT, Lee K, 
Boulay M, Abe Y, Tsuruta J, Steinbeck MJ 
J Leukoc Biol. 1994 Oct;56(4):436-43 

9c. Interferon-gamma activates the oxidative killing 
of Candida albicans by human granulocytes. 
Stevenhagen A, van Furth R 
Clin Exp Immunol. 1993 Jan;91(1):170-5 

9d. Hydrogen peroxide production by alveolar type II cells, 
alveolar macrophages, and endothelial cells. 
Kinnula VL, Everitt JI, Whorton AR, Crapo JD 
Am J Physiol. 1991 Aug;261(2 Pt 1):L84-91 

9e. Stimulation of the respiratory burst and promotion 
of bacterial killing in human granulocytes 
by intravenous immunoglobulin preparations. 
Marodi L, Kalmar A, Karmazsin L 
Clin Exp Immunol. 1990 Feb;79(2):164-9 

9f. Neutrophils may directly synthesize both H2O2 and O2- since 
surface stimuli induce their release in stimulus-specific ratios. 
Hoffstein ST, Gennaro DE, Manzi RM 
Inflammation. 1985 Dec;9(4):425-37 

9g. Quantitative and temporal characterization of the 
extracellular H2O2 pool generated by human neutrophils. 
Test ST, Weiss SJ 
J Biol Chem. 1984 Jan 10;259(1):399-405 
 
9h. Hydrogen peroxide release from eosinophils: quantitative, 
comparative studies of human and guinea pig eosinophils. 
Pincus SH 
J Invest Dermatol. 1983 Apr;80(4):278-81 

9i. Pyridine nucleotide-dependent generation of hydrogen peroxide 
by a particulate fraction from human neutrophils. 
DeChatelet LR, Shirley PS 
J Immunol. 1981 Mar;126(3):1165-9 

9j. Comparative studies on alveolar macrophages 
and polymorphonuclear leukocytes. I. H2O2 and O2- 
generation by rabbit alveolar macrophages. 
Yamaguchi T, Kakinuma K, Kaneda M, Shimada K 
J Biochem (Tokyo). 1980 May;87(5):1449-55 

9k. Interrelationship between oxygen consumption, 
superoxide anion and hydrogen peroxide formation 
in phagocytosing guinea pig polymorphonuclear leucocytes. 
Dri P, Bellavite P, Berton G, Rossi F 
Mol Cell Biochem. 1979 Jan 26;23(2):109-22 

9L. Hydrogen peroxide production and killing of Staphylococcus 
aureus by human polymorphonuclear leukocytes. 
Tsan MF, Douglass KH, McIntyre PA 
Blood. 1977 Mar;49(3):437-44 

9m. The role of superoxide anion and hydrogen peroxide 
in phagocytosis-associated oxidative metabolic reactions. 
Baehner RL, Murrmann SK, Davis J, Johnston RB Jr 
J Clin Invest. 1975 Sep;56(3):571-6 

9n. H2O2 release from human granulocytes during phagocytosis. 
I. Documentation, quantitation, and some regulating factors. 
Root RK, Metcalf J, Oshino N, Chance B 
J Clin Invest. 1975 May;55(5):945-55 

9o. Production of hydrogen peroxide 
by phagocytizing human granulocytes. 
Homan-Muller JW, Weening RS, Roos D 
J Lab Clin Med. 1975 Feb;85(2):198-207 

9p. Singlet excited oxygen as a mediator 
of the antibacterial action of leukocytes. 
Krinsky NI 
Science. 1974 Oct 25;186(4161):363-5 

9q. Biological defense mechanisms. The production 
by leukocytes of superoxide, a potential bactericidal agent. 
Babior BM, Kipnes RS, Curnutte JT 
J Clin Invest. 1973 Mar;52(3):741-4 

9r. The H2O2-production by polymorphonuclear 
leukocytes during phagocytosis. 
Zatti M, Rossi F, Patriarca P 
Experientia. 1968 Jul 15;24(7):669-70 

9s. A new method for the detection of hydroxyl radical 
production by phagocytic cells. 
Sagone AL Jr, Decker MA, Wells RM, Democko C 
Biochim Biophys Acta. 1980 Feb 21;628(1):90-7 

9t. Human granulocyte generation of hydroxyl radical. 
Weiss SJ, Rustagi PK, LoBuglio AF 
J Exp Med. 1978 Feb 1;147(2):316-23 

9u. Production of singlet oxygen by eosinophils activated 
in vitro by C5a and leukotriene B4. 
Teixeira MM, Cunha FQ, Noronha-Dutra A, Hothersall J 
FEBS Lett. 1999 Jun 25;453(3):265-8 

9v. Investigating antibody-catalyzed ozone generation 
by human neutrophils. 
Babior BM, Takeuchi C, Ruedi J, Gutierrez A, Wentworth P 
PNAS, Mar 18, 2003, 100(6):3031-3034 

10a. Free radicals generation by granulocytes 
from men during bed rest. 
Pawlak W, Kedziora J, Zolynski K, Kedziora-Kornatowska 
K, Blaszczyk J, Witkowski P 
J Gravit Physiol. 1998 Jul;5(1):P131-2 

10b. Eosinophils are a major source of nitric oxide-derived 
oxidants in severe asthma: characterization of pathways 
available to eosinophils for generating reactive 
nitrogen species. 
MacPherson JC, Comhair SA, Erzurum SC, Klein DF, 
Lipscomb MF, Kavuru MS, Samoszuk MK, Hazen SL 
J Immunol. 2001 May 1;166(9):5763-72 

10c. Helicobacter pylori urease suppresses bactericidal 
activity of peroxynitrite via carbon dioxide production. 
Kuwahara H, Miyamoto Y, Akaike T, Kubota T, Sawa T, 
Okamoto S, Maeda H 
Infect Immun. 2000 Aug;68(8):4378-83 

10d. Kinetics of nitric oxide and hydrogen peroxide 
production and formation of peroxynitrite during 
the respiratory burst of human neutrophils. 
Carreras MC, Pargament GA, Catz SD, Poderoso JJ, 
Boveris A 
FEBS Lett. 1994 Mar 14;341(1):65-8 

10e. Biological aspects of reactive nitrogen species. 
Patel RP, McAndrew J, Sellak H, White CR, Jo H, 
Freeman BA, Darley-Usmar VM 
Biochim Biophys Acta. 1999 May 5;1411(2-3):385-400 

10f. Peroxynitrite production by human neutrophils, 
monocytes and lymphocytes challenged with lipopolysaccharide. 
Gagnon C, Leblond FA, Filep JG 
FEBS Lett. 1998 Jul 10;431(1):107-10 

10g. Superoxide and peroxynitrite generation 
from inducible nitric oxide synthase in macrophages. 
Xia Y, Zweier JL 
Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6954-8 

10h. Peroxynitrite formation from activated human leukocytes. 
Fukuyama N, Ichimori K, Su Z, Ishida H, Nakazawa H 
Biochem Biophys Res Commun. 1996 Jul 16;224(2):414-9 

11a. Chlorination of Taurine by Human Neutrophils - 
Evidence for Hypochlorous Acid Generation. 
Weiss SJ, Klein R, Slivka A, Wei M 
J Clin Invest, Sep 1982, 70:598-607 

11b. Role of myeloperoxidase in the respiratory burst 
of human neutrophils. 
Nauseef WM, Metcalf JA, Root RK 
Blood. 1983 Mar;61(3):483-92 

11c. Role of myeloperoxidase-mediated antimicrobial 
systems in intact leukocytes. 
Klebanoff SJ, Hamon CB 
J Reticuloendothel Soc. 1972 Aug;12(2):170-96 

12a. Human mononuclear phagocyte antiprotozoal mechanisms: 
oxygen-dependent vs oxygen-independent activity 
against intracellular Toxoplasma gondii. 
Murray HW, Rubin BY, Carriero SM, Harris AM, Jaffee EA 
J Immunol. 1985 Mar;134(3):1982-8 

12b. Phagocytosis and killing of the protozoan Leishmania 
donovani by human polymorphonuclear leukocytes. 
Pearson RD, Steigbigel RT 
J Immunol. 1981 Oct;127(4):1438-43 

12c. The role of the phagocyte in host-parasite interactions. 
The direct quantitative estimation of H2O2 in phagocytizing cells. 
Paul B, Sbarra AJ 
Biochim Biophys Acta. 1968 Feb 1;156(1):168-78 

OXIDES OF CHLORINE AS DISINFECTANTS

All bacteria have been shown to be incabable of growing in any medium in which the oxidants (electron grabbers) out- number the reductants (electron donors). [13a] Therefore, oxidants are at least bacteriostatic and at most are bacteriocidal. [13b] Many oxidants have been proven useful as antibacterial disinfectants. [13c,13d] Hypochlorites (ClO-) are commonly used as bleaching agents, as swimming pool sanitizers, and as disinfectants. At low concentrations chlorine dioxide (ClO2) has been shown to kill many types of bacteria [14a-14j], viruses [15a-15L] and protozoa [16a-16f]. Ozone (O3) or chlorine dioxide (ClO2) are often used to disinfect public water supplies or to sanitize and deodorize waste water. [17a-17L] Sodium chlorite (NaClO2) or chlorine dioxide (ClO2) solutions are used in certain mouth washes to clear mouth odors and oral bacteria. [18a-18i] Chlorine dioxide sanitizes food preparation facilities. [19a] Acidified sodium chlorite is FDA approved as a spray in the meat packing industry to sanitized meat. [20a-20g] This can also be used to sanitize vegetables and other foods. [21a,21b] Farmers use this to cleanse the udders of cows to prevent mastitis, [22a,22b,22c] or to rid eggs of pathogenic bacteria. Chlorine dioxide can be used to disinfect endoscopes. [23a] Oxidants such as iodine, various peroxides, permanganate and chlorine dioxide can be applied topically to the skin to treat infections caused by bacteria or fungi. [24a-24d]

References:

13a. Oxidation-Reduction Potentials In Bacteriology And 
Biochemistry. 
L F Hewitt, 6th Ed, E. & S. Livingston Ltd., 1950 

13b. Role of Oxidants in Microbial Pathophysiology. 
R A Miller, B E Britigan 
Clinical Microbiology Reviews, 10(1):1-18, Jan 1997 

13c. Antiseptics and Disinfectants: Activity, Action and Resistance. 
by G McDonnell & A D Russell 
Clinical Microbiology Reviews, pp 147-179, Jan 1999 

13d. Treatment with oxidizing agents damages the inner 
membrane of spores of Bacillus subtilis and sensitizes 
spores to subsequent stress.
Cortezzo DE, Koziol-Dube K, Setlow B, Setlow P 
J Appl Microbiol. 2004;97(4):838-52 

14a. Mechanisms of killing of Bacillus subtilis spores 
by hypochlorite and chlorine dioxide.
Young SB, Setlow P.
J Appl Microbiol. 2003;95(1):54-67

14b. Inactivation of bacteria by Purogene.
Harakeh S, Illescas A, Matin A.
J Appl Bacteriol. 1988 May;64(5):459-63

14c. The inhibitory effect of Alcide, an antimicrobial drug, 
on protein synthesis in Escherichia coli.
Scatina J, Abdel-Rahman MS, Goldman E.
J Appl Toxicol. 1985 Dec;5(6):388-94 

14d. Bactericidal properties of chlorine dioxide. 
Ridenour GM, Ingols RS 
J Am Water Works Assn, 1947 39:561-567 

14e. Bactericidal effects of chlorine dioxide. 
Ridenour GM, Armbruster EH 
J Am Water Works Assn, 1949 41:537-550 

14f. Sporicidal properties of chlorine dioxide. 
Ridenour GM, Ingols RS, Armbruster EH 
Water & Sewage Works, 1949 96(8):1 

14g. Efficacy of chlorine dioxide as a bacteriocide. 
Bernarde MA, Isreal BM, Olivieri VP, Granstrom ML 
Appl Microbiol, 1965, 13(5):776-780 

14h. Kinetics and mechanism of bacterial disinfection 
by chlorine dioxide. 
Bernarde MA, Snow WB, Olivieri VP, Davidson B 
Appl Microbiol, 1967, 15(2):257-265 

14i. Alternative Disinfectants and Oxidants 
EPA Guidance Manual, April 1999, 
4.4 Pathogen Inactivation and Disinfection Efficacy, 
pp 4-15 to 4-22 

14j. Evaluation of ultrasonic scaling unit waterline 
contamination after use of chlorine dioxide mouthrinse 
lavage. 
Wirthlin MR, Marshall GW JR 
J Periodontol. 2001 Mar;72(3):401-10 

15a. Degradation of the Poliovirus 1 genome 
by chlorine dioxide. 
Simonet J, Gantzer C 
J Appl Microbiol. 2006 Apr;100(4):862-70 

15b. Inactivation of enteric adenovirus and feline 
calicivirus by chlorine dioxide. 
Thurston-Enriquez JA, Haas CN, Jacangelo J, Gerba CP 
Appl Environ Microbiol. 2005 Jun;71(6):3100-5 

15c. Mechanisms of inactivation of hepatitis A virus 
in water by chlorine dioxide. 
Li JW, Xin ZT, Wang XW, Zheng JL, Chao FH 
Water Res. 2004 Mar;38(6):1514-9 

15d. Virucidal efficacy of four new disinfectants. 
Eleraky NZ, Potgieter LN, Kennedy MA 
J Am Anim Hosp Assoc. 2002 May-Jun;38(3):231-4 

15e. Chlorine dioxide sterilization of red blood cells 
for transfusion, additional studies. 
Rubinstein A, Chanh T, Rubinstein DB. 
Int Conf AIDS. 1994 Aug 7-12; 10: 235 (abstract no. PB0953). 
U.S.C. School of Medicine, Los Angeles 

15f. Inactivation of human immunodeficiency virus by a 
medical waste disposal process using chlorine dioxide. 
Farr RW, Walton C 
Infect Control Hosp Epidemiol. 1993 Sep;14(9):527-9 

15g. Inactivation of human and simian rotaviruses 
by chlorine dioxide. 
Chen YS, Vaughn JM 
Appl Environ Microbiol. 1990 May;56(5):1363-6 

15h. Disinfecting capabilities of oxychlorine compounds. 
Noss CI, Olivieri VP 
Appl Environ Microbiol. 1985 Nov;50(5):1162-4 

15i. Mechanisms of inactivation of poliovirus 
by chlorine dioxide and iodine. 
Alvarez ME, O'Brien RT 
Appl Environ Microbiol. 1982 Nov;44(5):1064-71 

15j. A comparison of the virucidal properties of chlorine, 
chlorine dioxide, bromine chloride and iodine. 
Taylor GR, Butler M 
J Hyg (Lond). 1982 Oct;89(2):321-8 

15k. Inactivation of Poliomyelitis Virus by "Free" Chlorine. 
Ridennour GM, Ingols RS 
Am J Pub Health, 1946, 36(6):639 

15L. Alternative Disinfectants and Oxidants 
EPA Guidance Manual, April 1999, 
4.4 Pathogen Inactivation and Disinfection Efficacy, 
pp 4-15 to 4-22 

16a. Alternative Disinfectants and Oxidants 
EPA Guidance Manual, April 1999, 
4.4 Pathogen Inactivation and Disinfection Efficacy, 
pp 4-15 to 4-22 

16b. Cysticidal effect of chlorine dioxide on Giardia 
intestinalis cysts.
Winiecka-Krusnell J, Linder E 
Acta Trop. 1998 Jul 30;70(3):369-72 

16c. Effects of ozone, chlorine dioxide, chlorine, and 
monochloramine on Cryptosporidium parvum oocyst viability.
Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR 
Appl Environ Microbiol. 1990 May;56(5):1423-8 

16d. The effect of 'Alcide' on 4 strains of rodent 
coccidial oocysts. 
Owen DG 
Lab Anim. 1983 Oct;17(4):267-9 

16e. Water Treatment and Pathogen Control - 
Process Efficiency in Achieving Safe Drinking Water. 
LeChevallier MW, Au KK 
Section 3.3.3 Chlorine dioxide pp 52-54 
World Health Organization, IWA Publishing, 2004 

16f. Sequential inactivation of Cryptosporidium parvum 
oocysts with chlorine dioxide followed by free chlorine 
or monochloramine. 
Corona-Vasquez B, Rennecker JL, Driedger AM, Mariñas BJ 
Water Res. 2002 Jan;36(1):178-88

17a. Disinfectant efficacy of chlorite and 
chlorine dioxide in drinking water biofilms.
Gagnon GA, Rand JL, O'leary KC, Rygel AC, Chauret C, Andrews RC 
Water Research, 39(9):1809-17, May 2005 

17b. Pure Water Handbook. 
Osmonics, Inc. Minnetonka, Minnesota 

17c. Use Of Chlorine Dioxide In Water And Wastewater Treatment. 
Sussman S, Rauh JS pp 344-355 in: 
Ozone/Chlorine Dioxide Oxidation Products of Organic Materials. 
Rice RG, Cotruvo JA editors, 
International Ozone Institute & USEPA, 
Ozone Press International, 1978 

17d. Disinfection: Water and Wastewater. 
Johnson JD 
Ann Arbor Science Publishers, Inc. 1975 

17e. Chlorine dioxide in potable water treatment. 
Dowling LT 
Water Treat. & Exam. 1974, 23:190-204 

17f. Generation and use of chlorine dioxide in water treatment. 
Granstrom ML, Lee GF 
J Am Water Works Assn, 1958, 50:1453-1466 

17g. Use of chlorine dioxide to disinfect water supplies. 
Augenstein HW 
J Am Water Works Assn, 1974, 66(12):716-717 

17h. Water Treatment and Pathogen Control - 
Process Efficiency in Achieving Safe Drinking Water. 
LeChevallier MW, Au KK 
Section 3.3.3 Chlorine dioxide pp 52-54 
World Health Organization, IWA Publishing, 2004 

17i. Matching odour treatment processes to odour resources. 
Jeavons J, Hodgson P, Upton J 
Water Science and Technology, 2000, 41(9):227-232 

17j. The effect of predisinfection with chlorine dioxide 
on the formation of haloacetic acids and trihalomethanes 
in a drinking water supply. 
Harris CL 
Thesis submitted to Virginia Polytechnic Institute and 
State University, July 27,2001 

17k. Effect of pH and temperature on the kinetics 
of odor oxidation using chlorine dioxide. 
Kastner JR, Das KC, Hu C, McClendon R 
J Air Waste Manag Assoc. 2003 Oct;53(10):1218-24 

17L. Development of chlorine dioxide-related by-product 
models for drinking water treatment. 
Korn C, Andrew RC, Escobar MD 
Water Res. 2002 Jan;36(1):330-42 

18a. Cadaverine as a putative component of oral malodor. 
Goldberg S, Kozlovsky A, Gordon D, Gelernter I, 
Sintov A, Rosenberg M 
J Dent Res. 1994 Jun;73(6):1168-72 

18b. A multifactorial investigation of the ability of oral 
health care products (OHCPs) to alleviate oral malodour. 
Silwood CJ, Grootveld MC, Lynch E 
J Clin Periodontol. 2001 Jul;28(7):634-41 

18c. Use of 0.1% chlorine dioxide to inhibit the formation 
of morning volatile sulphur compounds (VSC). 
Peruzzo DC, Jandiroba PF, Nogueira Filho Gda R 
Braz Oral Res. 2007 Jan-Mar;21(1):70-4 

18d. Use of chlorine dioxide mouthrinse 
as the ultrasonic scaling lavage reduces 
the viable bacteria in the generated aerosols. 
Wirthlin MR, Choi JH, Kye SB 
J West Soc Periodontol Periodontal Abstr. 2006;54(2):35-44 

18e. Use of a novel group of oral malodor measurements 
to evaluate an anti-oral malodor mouthrinse (TriOralTM) 
in humans. 
Codipilly DP, Kaufman HW, Kleinberg I 
J Clin Dent. 2004;15(4):98-104 

18f. The clinical and microbiological effects of a novel 
acidified sodium chlorite mouthrinse on oral bacterial 
mucosal infections. 
Fernandes-Naglik L, Downes J, Shirlaw P, Wilson R, 
Challacombe SJ, Kemp GK, Wade WG 
Oral Dis. 2001 Sep;7(5):276-80 

18g. Efficacy of a chlorine dioxide-containing 
mouthrinse in oral malodor. 
Frascella J, Gilbert RD, Fernandez P, Hendler J 
Compend Contin Educ Dent. 2000 Mar;
21(3):241-4, 246, 248 passim; quiz 256 

18h. Odor reduction potential 
of a chlorine dioxide mouthrinse. 
Frascella J, Gilbert R, Fernandez P 
J Clin Dent. 1998;9(2):39-42 

18i. Use of a metastabilized chlorous acid/chlorine dioxide 
formulation as a mouthrinse for plaque reduction. 
Goultschin J, Green J, Machtei E, Stabholz A, Brayer L, 
Schwartz Z, Sela MN, Soskolne A 
Isr J Dent Sci. 1989 Oct;2(3):142-7 

19a. Use of chlorine dioxide for cannery sanitation and 
water conservation. 
Welch JL, Folinazzo JF 
Food Technology, 1959, 13(3):179-182 

20a. Effects of Carcass Washing Systems on Campylobacter 
Contamination in Large Broiler Processing Plants 
by M P Bashor, 
Masters Thesis, North Carolina State University, Dec 2002  

20b. Research Project Outline #4111, 
by C N Cutter, Penn State Univ, Nov 2005 

20c. Validation of the use of organic acids and acidified 
sodium chlorite to reduce Escherichia coli O157 and 
Salmonella typhimurium in beef trim and ground beef 
in a simulated processing environment.
by Harris K, Miller MF, Loneragan GH, Brashears MM.
J Food Prot. 69(8):1802-7, Aug 2006 
        
20d. Decreased dosage of acidified sodium chlorite reduces 
microbial contamination and maintains organoleptic 
qualities of ground beef products.
Bosilevac JM, Shackelford SD, Fahle R, Biela T, Koohmaraie M.
J Food Prot. 2004 Oct;67(10):2248-54

20e. The Evaluation of Antimicrobial Treatments for 
Poultry Carcasses 
European Commission Health & Consumer Protection Directorate-
General, April 2003 

20f. Determination of chlorate and chlorite and mutagenicity 
of seafood treated with aqueous chlorine dioxide. 
Kim J, Marshall MR, Du WX, Otwell WS, Wei CI 
J Agric Food Chem. 1999 Sep;47(9):3586-91 

20g. Acidified sodium chlorite solutions. 
Food and Drug Administration, HHS, pp143-144, 
Section 173.325, 21CFR Ch.1 (4-1-07 Edition) 

21a. Review - Application of Acidified Sodium Chlorite 
to Improve the Food Hygiene of Lightly Fermented Vegetables. 
by Y Inatsu, L Bari, S Kawamoto 
JARC 41(1 , pp 17-23, 2007 

21b. Reactions of aqueous chlorine and chlorine dioxide 
with model food compounds. 
Fukayama MY, Tan H, Wheeler WB, Wei CI 
Environ Health Perspect. 1986 Nov;69:267-74 

22a. Efficacy of Two Barrier Teat Dips Containing Chlorous 
Acid Germicides Against Experimental Challenge ... 
by R L Boddie, S C Nickerson, G K Kemp 
Journal of Dairy Science, 77 (10):3192-3197, 1994 

22b. Evaluation of a Chlorous Experimental and Natural Acid 
Chlorine Dioxide Teat Dip Under Experimental and Natural 
Exposure Conditions 
by P A Drechsler, E E Wildman, J W Pankey 
Journal of Dairy Science, 73 (8):2121, 1990 

22c. Preventing Bovine Mastitis by a Postmilking Teat 
Disinfectant Containing Acidified Sodium Chlorite
by J E Hillerton, J Cooper, J Morelli 
Journal of Dairy Science, 90:1201-1208, 2007 

23a. Endoscope disinfection using chlorine dioxide 
in an automated washer-disinfector. 
Isomoto H, Urata M, Kawazoe K, Matsuda J, Nishi Y, Wada 
A, Ohnita K, Hirakata Y, Matsuo N, Inoue K, Hirayama T, 
Kamihira S, Kohno S 
J Hosp Infect. 2006 Jul;63(3):298-305 

24a. Clinical and microbiological efficacy of chlorine dioxide 
in the management of chronic atrophic candidiasis: an open study.
Mohammad AR, Giannini PJ, Preshaw PM, Alliger H.
Int Dent J. 2004 Jun;54(3):154-8 

24b. Using a chlorine dioxide antibacterial gel 
for soft tissue healing. 
Babad MS 
Dent Today. 1999 Jun;18(6):88-9 

24c. Subchronic dermal toxicity studies 
of Alcide Allay gel and liquid in rabbits. 
Abdel-Rahman MS, Skowronski GA, Turkall RM, Gerges SE, 
Kadry AR, Abu-Hadeed AH 
J Appl Toxicol. 1987 Oct;7(5):327-33 

24d. Pharmacodynamics of alcide, a new antimicrobial 
compound, in rat and rabbit. 
Scatina J, Abdel-Rahman MS, Gerges SE, Khan MY, Gona O 
Fundam Appl Toxicol. 1984 Jun;4(3 Pt 1):479-84 

MALARIA IS OXIDANT SENSITIVE

From November 2006 through May of 2007 I spent hundreds of hours searching biochemical literature and medical literature pertaining to the biochemistry of Plasmodia. Four species are commonly pathogenic in humans namely: Plasmodium vivax, Plasmodium falciparum, Plasmodium ovale and Plasmodium malariae. What I found was an abundance of confirmation that, just like bacteria, Plasmodia are indeed quite sensitive to oxidants. [25a-25p]. Examples of oxidants toxic to Plasmodia include: artemisinin, artemether [26a-26n], t-butyl hydroperoxide [27a], xanthone [28a], various quinones [29a-29m] (e.g. atovaquone, lapachol, beta-lapachone, menadione) and methylene blue [30a-30i].

References:

25a. Double-drug development against antioxidant enzymes 
from Plasmodium falciparum. 
Biot C, Dessolin J, Grellier P, Davioud-Charvet E 
Redox Rep. 2003;8(5):280-3 

25b. Oxidative stress and antioxidant defenses: 
a target for the treatment of diseases caused 
by parasitic protozoa. 
Turrens JF 
Mol Aspects Med. 2004 Feb-Apr;25(1-2):211-20 

25c. Vampires, Pasteur and reactive oxygen species. 
Is the switch from aerobic to anaerobic metabolism 
a preventive antioxidant defence in blood-feeding 
parasites? 
Oliveira PL, Oliveira MF 
FEBS Lett. 2002 Aug 14;525(1-3):3-6 

25d. The role of cell-mediated immune responses 
in resistance to malaria, with special reference 
to oxidant stress. 
Allison AC, Eugui EM 
Annu Rev Immunol. 1983;1:361-92 

25e. Thalassaemia trait, red blood cell age and oxidant 
stress: effects on Plasmodium falciparum growth and 
sensitivity to artemisinin. 
Senok AC, Nelson EA, Li K, Oppenheimer SJ 
Trans R Soc Trop Med Hyg. 1997 Sep-Oct;91(5):585-9 

25f. Antiplasmodial activity of nitroaromatic and 
quinoidal compounds: redox potential vs. inhibition 
of erythrocyte glutathione reductase. 
Grellier P, Sarlauskas J, Anusevicius Z, Maroziene A, 
Houee-Levin C, Schrevel J, Cenas N 
Arch Biochem Biophys. 2001 Sep 15;393(2):199-206 

25g. Reactive oxygen and nitrogen intermediates and 
products from polyamine degradation are Babesiacidal 
in vitro.
Johnson WC, Cluff CW, Goff WL, Wyatt CR 
Ann N Y Acad Sci. 1996 Jul 23;791:136-47 

25h. Amine peroxides as potential antimalarials. 
Vennerstrom JL 
J Med Chem. 1989 Jan;32(1):64-7 

25i. Thalassaemia trait, red blood cell age and oxidant 
stress: effects on Plasmodium falciparum growth and 
sensitivity to artemisinin. 
Senok AC, Nelson EA, Li K, Oppenheimer SJ 
Trans R Soc Trop Med Hyg. 1997 Sep-Oct;91(5):585-9 

25j. Protection against murine cerebral malaria 
by dietary-induced oxidative stress. 
Levander OA, Fontela R, Morris VC, Ager AL Jr 
J Parasitol. 1995 Feb;81(1):99-103 

25k. Antioxidant defense mechanisms in parasitic protozoa. 
Mehlotra RK 
Crit Rev Microbiol. 1996;22(4):295-314 

25L. Killing of Plasmodium yoelii by enzyme-induced 
products of the oxidative burst. 
Dockrell HM, Playfair JH 
Infect Immun. 1984 Feb;43(2):451-6 

25m. Toxicity of certain products of lipid peroxidation 
to the human malaria parasite Plasmodium falciparum. 
Clark IA, Butcher GA, Buffinton GD, Hunt NH, Cowden WB 
Biochem Pharmacol. 1987 Feb 15;36(4):543-6 

25n. Oxidative stress and malaria-infected erythrocytes. 
Mishra NC, Kabilan L, Sharma A 
Indian J Malariol. 1994 Jun;31(2):77-87 

25o. Killing of blood-stage murine malaria parasites 
by hydrogen peroxide. 
Dockrell HM, Playfair JH 
Infect Immun. 1983 Jan;39(1):456-9 

25p. Evidence for reactive oxygen intermediates 
causing hemolysis and parasite death in malaria. 
Clark IA, Hunt NH 
Infect Immun. 1983 Jan;39(1):1-6 

26a. Mechanism-based design of parasite-targeted 
artemisinin derivatives: synthesis and antimalarial activity 
of new diamine containing analogues. 
Hindley S, Ward SA, Storr RC, Searle NL, Bray PG, Park BK, 
Davies J, O'Neill PM 
J Med Chem. 2002 Feb 28;45(5):1052-63 

26b. Proposed reductive metabolism of artemisinin 
by glutathione transferases in vitro. 
Mukanganyama S, Naik YS, Widersten M, Mannervik B, 
Hasler JA 
Free Radic Res. 2001 Oct;35(4):427-34 

26c. Effect of dihydroartemisinin on the antioxidant 
capacity of P. falciparum-infected erythrocytes. 
Ittarat W, Sreepian A, Srisarin A, Pathepchotivong K 
Southeast Asian J Trop Med Public Health. 2003 Dec;34(4):744-50 

26d. Evidence that haem iron in the malaria parasite is 
not needed for the antimalarial effects of artemisinin. 
Parapini S, Basilico N, Mondani M, Olliaro P, 
Taramelli D, Monti D 
FEBS Lett. 2004 Sep 24;575(1-3):91-4 

26e. Why artemisinin and certain synthetic peroxides are 
potent antimalarials. Implications for the mode of action. 
Jefford CW 
Curr Med Chem. 2001 Dec;8(15):1803-26 

26f. Redox reaction of artemisinin with ferrous 
and ferric ions in aqueous buffer. 
Sibmooh N, Udomsangpetch R, Kujoa A, Chantharaksri U, 
Mankhetkorn S 
Chem Pharm Bull (Tokyo). 2001 Dec;49(12):1541-6 

26g. Artemisinin and the antimalarial endoperoxides: 
from herbal remedy to targeted chemotherapy. 
Meshnick SR, Taylor TE, Kamchonwongpaisan S 
Microbiol Rev. 1996 Jun;60(2):301-15 

26h. The mode of action of antimalarial endoperoxides. 
Meshnick SR 
Trans R Soc Trop Med Hyg. 1994 Jun;88 Suppl 1:S31 

26i. Iron-dependent free radical generation from the 
antimalarial agent artemisinin (qinghaosu). 
Meshnick SR, Yang YZ, Lima V, Kuypers F, 
Kamchonwongpaisan S, Yuthavong Y 
Antimicrob Agents Chemother. 1993 May;37(5):1108-14 

26j. Effect of beta-arteether treatment on erythrocytic 
methemoglobin reductase system in Plasmodium yoelii 
nigeriensis infected mice. 
Srivastava S, Alhomida AS, Siddiqi NJ, Pandey VC, Puri SK 
Drug Chem Toxicol. 2001 May;24(2):181-90 

26k. In vitro assessment of methylene blue on chloroquine-
sensitive and -resistant Plasmodium falciparum strains 
reveals synergistic action with artemisinins. 
Akoachere M, Buchholz K, Fischer E, Burhenne J, 
Haefeli WE, Schirmer RH, Becker K 
Antimicrob Agents Chemother. 2005 Nov;49(11):4592-7 

26L. Studies on hepatic oxidative stress and antioxidant 
defence systems during arteether treatment of 
Plasmodium yoelii nigeriensis infected mice. 
Siddiqi NJ, Pandey VC 
Mol Cell Biochem. 1999 Jun;196(1-2):169-73 

26m. Effect of sodium artesunate on malaria infected human 
erythrocytes. 
Pan HZ, Lin FB, Zhang ZA 
Proc Chin Acad Med Sci Peking Union Med Coll. 1989;4(4):181-5 

26n. [Peroxidative antimalaria mechanism of sodium artesunate]
Li FB, Pan HZ [article in Chinese]
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1989 Jun;11(3):180-4 

27a. Radical-mediated damage to parasites and erythrocytes 
in Plasmodium vinckei infected mice after injection 
of t-butyl hydroperoxide. 
Clark IA, Hunt NH, Cowden WB, Maxwell LE, Mackie EJ 
Clin Exp Immunol. 1984 Jun;56(3):524-30 

28a. Potentiation of an antimalarial oxidant drug. 
Winter RW, Ignatushchenko M, Ogundahunsi OA, 
Cornell KA, Oduola AM, Hinrichs DJ, Riscoe MK 
Antimicrob Agents Chemother. 1997 Jul;41(7):1449-54 

29a. The multiple roles of the mitochondrion 
of the malarial parasite. 
Krungkrai J 
Parasitology. 2004 Nov;129(Pt 5):511-24 

29b. Antimalarial quinones: redox potential dependence of 
methemoglobin formation and heme release in erythrocytes. 
Lopez-Shirley K, Zhang F, Gosser D, Scott M, Meshnick SR 
J Lab Clin Med. 1994 Jan;123(1):126-30 

29c. Antimalarial efficacy of methylene blue and 
menadione and their effect on glutathione metabolism 
of Plasmodium yoelii-infected albino mice. 
Arora K, Srivastava AK 
Parasitol Res. 2005 Dec;97(6):521-6 

29d. Antiplasmodial activity of nitroaromatic and 
quinoidal compounds: redox potential vs. inhibition 
of erythrocyte glutathione reductase. 
Grellier P, Sarlauskas J, Anusevicius Z, Maroziene A, 
Houee-Levin C, Schrevel J, Cenas N 
Arch Biochem Biophys. 2001 Sep 15;393(2):199-206 

29e. Antiplasmodial activity of naphthoquinones related 
to lapachol and beta-lapachone. 
Pérez-Sacau E, Estévez-Braun A, Ravelo AG, 
Gutiérrez Yapu D, Giménez Turba A 
Chem Biodivers. 2005 Feb;2(2):264-74 

29f. Newbouldiaquinone A: A naphthoquinone-anthraquinone 
ether coupled pigment, as a potential antimicrobial and 
antimalarial agent from Newbouldia laevis. 
Eyong KO, Folefoc GN, Kuete V, Beng VP, Krohn K, Hussain H, 
Nkengfack AE, Saeftel M, Sarite SR, Hoerauf A 
Phytochemistry. 2006 Mar;67(6):605-9;Epub 2006 Jan 26 

29g. Anthranoid compounds with antiprotozoal activity 
from Vismia orientalis. 
Mbwambo ZH, Apers S, Moshi MJ, Kapingu MC, Van Miert S, 
Claeys M, Brun R, Cos P, Pieters L, Vlietinck A 
Planta Med. 2004 Aug;70(8):706-10 

29h. Antimalarial activity of phenazines from lapachol, 
beta-lapachone and its derivatives against Plasmodium 
falciparum in vitro and Plasmodium berghei in vivo. 
de Andrade-Neto VF, Goulart MO, da Silva Filho JF, 
da Silva MJ, Pinto Mdo C, Pinto AV, Zalis MG, 
Carvalho LH, Krettli AU 
Bioorg Med Chem Lett. 2004 Mar 8;14(5):1145-9 

29i. In vitro antiprotozoal and cytotoxic activities 
of some alkaloids, quinones, flavonoids, and coumarins. 
del Rayo Camacho M, Phillipson JD, Croft SL, Yardley V, 
Solis PN 
Planta Med. 2004 Jan;70(1):70-2 

29j. Aminonaphthoquinones--a novel class of compounds 
with potent antimalarial activity against Plasmodium 
falciparum. 
Kapadia GJ, Azuine MA, Balasubramanian V, Sridhar R 
Pharmacol Res. 2001 Apr;43(4):363-7 

29k. In vitro response of Plasmodium falciparum to 
atovaquone and correlation with other antimalarials: 
comparison between African and Asian strains. 
Gay F, Bustos D, Traore B, Jardinel C, Southammavong M, 
Ciceron L, Danis MM 
Am J Trop Med Hyg. 1997 Mar;56(3):315-7 

29L. In vitro activity of natural and synthetic 
naphthoquinones against erythrocytic stages 
of Plasmodium falciparum. 
Carvalho LH, Rocha EM, Raslan DS, Oliveira AB, Krettli AU 
Braz J Med Biol Res. 1988;21(3):485-7 

29m. Antiplasmodial and antioxidant isofuranonaphthoquinones 
from the roots of Bulbine capitata. 
Bezabih M, Abegaz BM, Dufall K, Croft K, Skinner-Adams T, 
Davis TM 
Planta Med. 2001 Jun;67(4):340-4 

30a. Methylene blue as an antimalarial agent. 
Schirmer RH, Coulibaly B, Stich A, Scheiwein M, 
Merkle H, Eubel J, Becker K, Becher H, Müller O, 
Zich T, Schiek W, Kouyaté B 
Redox Rep. 2003;8(5):272-5 

30b. Recombinant Plasmodium falciparum glutathione reductase 
is inhibited by the antimalarial dye methylene blue. 
Färber PM, Arscott LD, Williams CH Jr, Becker K, 
Schirmer RH 
FEBS Lett. 1998 Feb 6;422(3):311-4 

30c. Antimalarial efficacy of methylene blue and 
menadione and their effect on glutathione metabolism 
of Plasmodium yoelii-infected albino mice. 
Arora K, Srivastava AK 
Parasitol Res. 2005 Dec;97(6):521-6 

30d. Methylene blue for malaria in Africa: results from 
a dose-finding study in combination with chloroquine 
Meissner PE, Mandi G, Coulibaly B, Witte S, Tapsoba T, 
Mansmann U, Rengelshausen J, Schiek W, Jahn A, 
Walter-Sack I, Mikus G, Burhenne J, Riedel KD, 
Schirmer RH, Kouyaté B, Müller O 
Malar J. 2006;5:84 

30e. In vitro assessment of methylene blue on chloroquine-
sensitive and -resistant Plasmodium falciparum strains 
reveals synergistic action with artemisinins. 
Akoachere M, Buchholz K, Fischer E, Burhenne J, 
Haefeli WE, Schirmer RH, Becker K 
Antimicrob Agents Chemother. 2005 Nov;49(11):4592-7 

30f. Mode of antimalarial effect of methylene blue and 
some of its analogues on Plasmodium falciparum in culture 
and their inhibition of P. vinckei petteri and P. 
yoelii nigeriensis in vivo. 
Atamna H, Krugliak M, Shalmiev G, Deharo E, 
Pescarmona G, Ginsburg H 
Biochem Pharmacol. 1996 Mar 8;51(5):693-700 

30g. Antimalarial dyes revisited: xanthenes, azines, 
oxazines, and thiazines. 
Vennerstrom JL, Makler MT, Angerhofer CK, Williams JA 
Antimicrob Agents Chemother. 1995 Dec;39(12):2671-7 

30h. The influence of methylene blue on the pentose 
phosphate pathway in erythrocytes of monkeys infected 
with Plasmodium knowlesi. 
Barnes MG, Polet H 
J Lab Clin Med. 1969 Jul;74(1):1-11 

30i. The phenothiazinium chromophore and the evolution 
of antimalarial drugs. 
Wainwright M, Amaral L 
Trop Med Int Health. 2005 Jun;10(6):501-11 

TARGETING THIOLS

Like bacteria, fungi and tumor cells, the ability of Plasmodia to live and grow depends heavily on an internal abundance of reductants. This is especially true regarding thiol compounds also known as sulfhydryl compounds (RSH). [31a,31b] Thiols as a class behave as reductants (electron donors). As such they are especially sensitive to oxidants (electron grabbers). Thiols (RSH) such as glutathione [32a-32L] and other sulfur compounds [33a,33b,33c] are reactive with sodium chlorite (NaClO2) and with chlorine dioxide (ClO2). These are the very agents present in Mr. Humble's solution. The products of oxidation of thiols (RSH) using various oxides of chlorine are: disulfides (RSSR), disulfide monoxides (RSSOR), sulfenic acids (RSOH), sulfinic acids (RSO2H), and sulfonic acids (RSO3H). None of these can support the life processes of the parasite. Upon sufficient removal of the parasite's life sustaining thiols by oxidation, the parasite rapidly dies. [34a-34e] A list of thiols (RSH) upon which survival of Plasmodium species heavily depend includes: lipoic acid and dihydrolipoic acid [35a-35h], coenzyme A and acyl carrier protein [36a-36f], glutathione [37a-37m], glutathione reductase [38a-38e], glutathione-S-transferase [39a-39g], peroxiredoxin [40a-40L], thioredoxin [41a-41g], glutaredoxin [42a,42b,42c], plasmoredoxin [43a], thioredoxin reductase [44a-44g], falcipain [45a-45i], and ornithine decarboxylase [46a-46e].

References:

31a. Thiol-based redox metabolism of protozoan parasites. 
Muller S, Liebau E, Walter RD, Krauth-Siegel RL 
Trends Parasitol. 2003 Jul;19(7):320-8 
Comment in:    Trends Parasitol. 2004 Feb;20(2):58-9 

31b. Glutathione, altruistic metabolite in fungi. 
Pócsi I, Prade RA, Penninckx MJ 
Adv Microb Physiol. 2004;49:1-76 

32a. A comparison of the effects of ocular preservatives 
on mammalian and microbial ATP and glutathione levels. 
Ingram PR, Pitt AR, Wilson CG, Olejnik O, Spickett CM 
Free Radic Res. 2004 Jul;38(7):739-50 

32b. The effect of Alcide, a new antimicrobial drug, 
on rat blood glutathione and erythrocyte osmotic 
fragility, in vitro. 
Abdel-Rahman MS, Scatina J 
J Appl Toxicol. 1985 Jun;5(3):178-81 

32c. Chlorite-hemoprotein interaction as key role for the 
pharmacological activity of the chlorite-based drug WF10. 
Schempp H, Reim M, Dornisch K, Elstner EF 
Arzneimittelforschung. 2001;51(7):554-62 

32d. Kinetics and mechanisms of chlorine dioxide and 
chlorite oxidations of cysteine and glutathione. 
Ison A, Odeh IN, Margerum DW 
Inorg Chem. 2006 Oct 16;45(21):8768-75 

32e. The interaction of sodium chlorite with 
phospholipids and glutathione: a comparison of effects 
in vitro, in mammalian and in microbial cells. 
Ingram PR, Homer NZ, Smith RA, Pitt AR, Wilson CG, 
Olejnik O, Spickett CM 
Arch Biochem Biophys. 2003 Feb 1;410(1):121-33 

32f. Pharmacodynamics of alcide, a new antimicrobial 
compound, in rat and rabbit. 
Scatina J, Abdel-Rahman MS, Gerges SE, Khan MY, Gona O 
Fundam Appl Toxicol. 1984 Jun;4(3 Pt 1):479-84 
(decreased glutathion) 

32g. Effect of chlorine dioxide and metabolites 
on glutathione dependent system in rat, mouse and 
chicken blood. 
Couri D, Abdel-Rahman MS 
J Environ Pathol Toxicol 1979 Dec;3(1-2):451-60 

32h. Kinetics of Cl02 and effects of Cl02, Cl02-, 
and Cl03- in drinking water on blood glutathione and 
hemolysis in rat and chicken. 
Abdel-Rahman MS, Couri D, Bull RJ 
J Environ Pathol Toxicol. 1979 Dec;3(1-2):431-49 

32i. Oxidative damage to the erythrocyte induced 
by sodium chlorite, in vitro.
Heffernan WP, Guion C, Bull RJ 
J Environ Pathol Toxicol. 1979 Jul-Aug;2(6):1501-10 
(chlorite depletes GSH) 

32j. Oxidative damage to the erythrocyte induced 
by sodium chlorite, in vivo. 
Heffernan WP, Guion C, Bull RJ 
J Environ Pathol Toxicol. 1979 Jul-Aug;2(6):1487-99 
(chlorite decreases GSH) 

32k. The effect of Alcide, a new antimicrobial drug, on rat 
blood glutathione and erythrocyte osmotic fragility, in vitro. 
Abdel-Rahman MS, Scatina J 
J Appl Toxicol. 1985 Jun;5(3):178-81 

32L. Toxicity of chlorine dioxide in drinking water. 
Abdel-Rahman MS, Couri D, Bull RJ 
J Environ Pathol Toxicol Oncol. 1985 Sep-Oct;6(1):105-13 

33a. Oxyhalogen-Sulfur Chemistry: 
Kinetics and Mechanism of Oxidation of N-Acetylthiourea 
by Chlorite and Chlorine Dioxide. 
Olagunju O, Siegel PD, Olojo R, Simoyi RH 
J Phys Chem A, 110 (7), 2396 -2410, 2006

33b. Oxyhalogen-Sulfur Chemistry: 
Oxidation of N-Acetylcysteine 
by Chlorite and Acidic Bromate. 
Darkwa J, Olojo R, Olagunju O, Otoikhian A, Simoyi RH 
J. Phys. Chem. A, 107 (46), 9834 -9845, 2003 

33c. Oxyhalogen - Sulfur Chemistry: 
Oxidation of Taurine by Chlorite in Acidic Medium 
Chinake CR, Simoyi RH 
J Phys Chem B, 1997, 101, 1207 

34a. Thioredoxin networks in the malarial parasite 
Plasmodium falciparum. 
Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K 
Antioxid Redox Signal. 2006 Jul-Aug;8(7-8):1227-39 

34b. Thioredoxin and glutathione system of malaria 
parasite Plasmodium falciparum. 
Muller S, Gilberger TW, Krnajski Z, Luersen K, 
Meierjohann S, Walter RD, Muller S, Lüersen K 
Protoplasma. 2001;217(1-3):43-9 

34c. Plasmodium falciparum thioredoxins and glutaredoxins 
as central players in redox metabolism. 
Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K 
Redox Rep. 2003;8(5):246-50 

34d. The thiol-based redox networks of pathogens: 
unexploited targets in the search for new drugs. 
Jaeger T, Flohe L, Flohé L 
Biofactors. 2006;27(1-4):109-20 

34e. Redox and antioxidant systems of the malaria parasite 
Plasmodium falciparum. 
Muller S 
Mol Microbiol. 2004 Sep;53(5):1291-305 

35a. The plasmodial apicoplast was retained under evolutionary 
selective pressure to assuage blood stage oxidative stress. 
Toler S 
Med Hypotheses. 2005;65(4):683-90 

35b. Scavenging of the cofactor lipoate is essential for the 
survival of the malaria parasite Plasmodium falciparum 
Allary M, Lu JZ, Zhu L, Prigge ST 
Mol Microbiol. 2007 Mar;63(5):1331-44;Epub 2007 Jan 22 

35c. Plasmodium falciparum possesses organelle-specific alpha-
keto acid dehydrogenase complexes and lipoylation pathways. 
Günther S, McMillan PJ, Wallace LJ, Müller S 
Biochem Soc Trans. 2005 Nov;33(Pt 5):977-80 

35d. The malaria parasite Plasmodium falciparum has 
only one pyruvate dehydrogenase complex, which is located 
in the apicoplast.
Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, 
McFadden GI 
Mol Microbiol. 2005 Jan;55(1):39-53 
Comment in:    Mol Microbiol. 2005 Jan;55(1):1-4 

35e. The human malaria parasite Plasmodium falciparum 
possesses two distinct dihydrolipoamide dehydrogenases. 
McMillan PJ, Stimmler LM, Foth BJ, McFadden GI, Müller S 
Mol Microbiol. 2005 Jan;55(1):27-38 
Comment in: Mol Microbiol. 2005 Jan;55(1):1-4 

35f. The human malaria parasite Plasmodium falciparum has 
distinct organelle-specific lipoylation pathways. 
Wrenger C, Müller S 
Mol Microbiol. 2004 Jul;53(1):103-13 

35g. Apicomplexan parasites contain a single lipoic acid 
synthase located in the plastid. 
Thomsen-Zieger N, Schachtner J, Seeber F 
FEBS Lett. 2003 Jul 17;547(1-3):80-6 

35h. Biosynthetic pathways of plastid-derived organelles 
as potential drug targets against parasitic apicomplexa. 
Seeber F 
Curr Drug Targets Immune Endocr Metabol Disord. 
2003 Jun;3(2):99-109 

36a. Fatty acid biosynthesis as a drug target 
in apicomplexan parasites. 
Goodman CD, McFadden GI 
Curr Drug Targets. 2007 Jan;8(1):15-30 

36b. Apicoplast fatty acid biosynthesis as a target 
for medical intervention in apicomplexan parasites. 
Gornicki P 
Int J Parasitol. 2003 Aug;33(9):885-96 

36c. A type II pathway for fatty acid biosynthesis presents 
drug targets in Plasmodium falciparum. 
Waller RF, Ralph SA, Reed MB, Su V, Douglas JD, 
Minnikin DE, Cowman AF, Besra GS, McFadden GI 
Antimicrob Agents Chemother. 2003 Jan;47(1):297-301 

36d. Recombinant expression and biochemical characterization 
of the unique elongating beta-ketoacyl-acyl carrier protein 
synthase involved in fatty acid biosynthesis of Plasmodium 
falciparum using natural and artificial substrates 
Lack G, Homberger-Zizzari E, Folkers G, Scapozza L, Perozzo R 
J Biol Chem. 2006 Apr 7;281(14):9538-46 

36e. Identification, characterization, and inhibition 
of Plasmodium falciparum beta-hydroxyacyl-acyl carrier 
protein dehydratase (FabZ). 
Sharma SK, Kapoor M, Ramya TN, Kumar S, Kumar G, Modak R, 
Sharma S, Surolia N, Surolia A 
J Biol Chem. 2003 Nov 14;278(46):45661-71 

36f. Analyses of co-operative transitions in Plasmodium 
falciparum beta-ketoacyl acyl carrier protein reductase 
upon co-factor and acyl carrier protein binding. 
Karmodiya K, Surolia N 
FEBS J. 2006 Sep;273(17):4093-103 

37a. Characterization of the glyoxalases of the malarial parasite 
Plasmodium falciparum and comparison with their human counterparts 
Akoachere M, Iozef R, Rahlfs S, Deponte M, Mannervik B, 
Creighton DJ, Schirmer H, Becker K 
Biol Chem. 2005 Jan;386(1):41-52 

37b. Glutathione--functions and metabolism in the malarial 
parasite Plasmodium falciparum. 
Becker K, Rahlfs S, Nickel C, Schirmer RH 
Biol Chem. 2003 Apr;384(4):551-66 

37c. The thioredoxin system of the malaria parasite 
Plasmodium falciparum. Glutathione reduction revisited. 
Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K 
J Biol Chem. 2000 Dec 22;275(51):40180-6 

37d. Thioredoxin and glutathione system of malaria 
parasite Plasmodium falciparum. 
Muller S, Gilberger TW, Krnajski Z, Luersen K, 
Meierjohann S, Walter RD, Muller S, Lüersen K 
Protoplasma. 2001;217(1-3):43-9 

37e. Thioredoxin reductase and glutathione synthesis 
in Plasmodium falciparum. 
Muller S, Muller S 
Redox Rep. 2003;8(5):251-5 

37f. Plasmodium falciparum-infected red blood cells depend 
on a functional glutathione de novo synthesis 
attributable to an enhanced loss of glutathione. 
Luersen K, Walter RD, Muller S, Lüersen K, Müller S 
Biochem J. 2000 Mar 1;346 Pt 2:545-52 

37g. Characterization of the glyoxalases of the malarial 
parasite Plasmodium falciparum and comparison 
with their human counterparts. 
Akoachere M, Iozef R, Rahlfs S, Deponte M, Mannervik B, 
Creighton DJ, Schirmer H, Becker K 
Biol Chem. 2005 Jan;386(1):41-52 

37h. Glutathione synthetase from Plasmodium falciparum. 
Meierjohann S, Walter RD, Muller S 
Biochem J. 2002 May 1;363(Pt 3):833-8 

37i. Ceramide mediates growth inhibition of the Plasmodium 
falciparum parasite. 
Pankova-Kholmyansky I, Dagan A, Gold D, Zaslavsky Z, 
Skutelsky E, Gatt S, Flescher E 
Cell Mol Life Sci. 2003 Mar;60(3):577-87 

37j. The malaria parasite supplies glutathione to its host 
cell--investigation of glutathione transport and metabolism 
in human erythrocytes infected with Plasmodium falciparum. 
Atamna H, Ginsburg H 
Eur J Biochem. 1997 Dec 15;250(3):670-9 

37k. Redox processes in malaria and other parasitic diseases. 
Determination of intracellular glutathione. 
Becker K, Gui M, Traxler A, Kirsten C, Schirmer RH 
Histochemistry. 1994 Nov;102(5):389-95 

37L. The effect of Alcide, a new antimicrobial drug, on rat 
blood glutathione and erythrocyte osmotic fragility, in vitro. 
Abdel-Rahman MS, Scatina J 
J Appl Toxicol. 1985 Jun;5(3):178-81 

37m. Toxicity of chlorine dioxide in drinking water. 
Abdel-Rahman MS, Couri D, Bull RJ 
J Environ Pathol Toxicol Oncol. 1985 Sep-Oct;6(1):105-13 

38a. Glutathione reductase-deficient erythrocytes 
as host cells of malarial parasites. 
Zhang Y, Konig I, Schirmer RH 
Biochem Pharmacol. 1988 Mar 1;37(5):861-5 

38b. Glutathione reductase of the malarial parasite 
Plasmodium falciparum: crystal structure and inhibitor 
development. 
Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, 
Karplus PA 
J Mol Biol. 2003 May 9;328(4):893-907 

38c. Kinetic characterization of glutathione reductase 
from the malarial parasite Plasmodium falciparum. 
Comparison with the human enzyme. 
Bohme CC, Arscott LD, Becker K, Schirmer RH, Williams CH Jr 
J Biol Chem. 2000 Dec 1;275(48):37317-23 

38d. Glutathione reductase inhibitors as potential 
antimalarial drugs. Effects of nitrosoureas 
on Plasmodium falciparum in vitro. 
Zhang YA, Hempelmann E, Schirmer RH 
Biochem Pharmacol. 1988 Mar 1;37(5):855-60 

38e. Glutathione reductase inhibitors as potential 
antimalarial drugs. Effects of nitrosoureas 
on Plasmodium falciparum in vitro. 
Zhang YA, Hempelmann E, Schirmer RH 
Biochem Pharmacol. 1988 Mar 1;37(5):855-60 

39a. Glutathione S-transferase of the malarial parasite 
Plasmodium falciparum: characterization of a potential 
drug target. 
Harwaldt P, Rahlfs S, Becker K 
Biol Chem. 2002 May;383(5):821-30 

39b. Glutathione S-transferase from malarial parasites: 
structural and functional aspects. 
Deponte M, Becker K 
Methods Enzymol. 2005;401:241-53 

39c. The glutathione S-transferase from Plasmodium falciparum. 
Liebau E, Bergmann B, Campbell AM, Teesdale-Spittle P, 
Brophy PM, Lüersen K, Walter RD 
Mol Biochem Parasitol. 2002 Sep-Oct;124(1-2):85-90 

39d. Glutathione S-transferases and related proteins 
from pathogenic human parasites behave 
as immunomodulatory factors. 
Ouaissi A, Ouaissi M, Sereno D 
Immunol Lett. 2002 May 1;81(3):159-64 

39e. Plasmodium falciparum glutathione S-transferase--
structural and mechanistic studies on ligand binding 
and enzyme inhibition. 
Hiller N, Fritz-Wolf K, Deponte M, Wende W, 
Zimmermann H, Becker K 
Protein Sci. 2006 Feb;15(2):281-9 

39f. Cooperativity and pseudo-cooperativity in the 
glutathione S-transferase from Plasmodium falciparum. 
Liebau E, De Maria F, Burmeister C, Perbandt M, 
Turella P, Antonini G, Federici G, Giansanti F, 
Stella L, Lo Bello M, Caccuri AM, Ricci G 
J Biol Chem. 2005 Jul 15;280(28):26121-8 

39g. X-ray structure of glutathione S-transferase 
from the malarial parasite Plasmodium falciparum. 
Fritz-Wolf K, Becker A, Rahlfs S, Harwaldt P, Schirmer RH, 
Kabsch W, Becker K 
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13821-6 

40a. Roles of 1-Cys peroxiredoxin in haem detoxification 
in the human malaria parasite Plasmodium falciparum. 
Kawazu S, Ikenoue N, Takemae H, Komaki-Yasuda K, Kano S 
FEBS J. 2005 Apr;272(7):1784-91 

40b. Structural and biochemical characterization 
of a mitochondrial peroxiredoxin from Plasmodium 
falciparum. 
Boucher IW, McMillan PJ, Gabrielsen M, Akerman SE, 
Brannigan JA, Schnick C, Brzozowski AM, Wilkinson AJ, 
Muller S, Müller S 
Mol Microbiol. 2006 Aug;61(4):948-59 

40c. 2-Cys Peroxiredoxin TPx-1 is involved 
in gametocyte development in Plasmodium berghei. 
Yano K, Komaki-Yasuda K, Tsuboi T, Torii M, Kano S, 
Kawazu S 
Mol Biochem Parasitol. 2006 Jul;148(1):44-51 

40d. Plasmodium falciparum 2-Cys peroxiredoxin reacts 
with plasmoredoxin and peroxynitrite. 
Nickel C, Trujillo M, Rahlfs S, Deponte M, Radi R, 
Becker K 
Biol Chem. 2005 Nov;386(11):1129-36 

40e. Expression of mRNAs and proteins for peroxiredoxins 
in Plasmodium falciparum erythrocytic stage. 
Yano K, Komaki-Yasuda K, Kobayashi T, Takemae H, 
Kita K, Kano S, Kawazu S 
Parasitol Int. 2005 Mar;54(1):35-41 

40f. Crystal structure of a novel Plasmodium falciparum 
1-Cys peroxiredoxin. 
Sarma GN, Nickel C, Rahlfs S, Fischer M, Becker K, 
Karplus PA 
J Mol Biol. 2005 Mar 4;346(4):1021-34 

40g. 2-Cys peroxiredoxin PfTrx-Px1 is involved 
in the antioxidant defence of Plasmodium falciparum. 
Akerman SE, Muller S, Müller S 
Mol Biochem Parasitol. 2003 Aug 31;130(2):75-81 

40h. Expression profiles of peroxiredoxin proteins 
of the rodent malaria parasite Plasmodium yoelii. 
Kawazu S, Nozaki T, Tsuboi T, Nakano Y, Komaki-Yasuda K, 
Ikenoue N, Torii M, Kano S 
Int J Parasitol. 2003 Nov;33(13):1455-61 

40i. Disruption of the Plasmodium falciparum 2-Cys 
peroxiredoxin gene renders parasites hypersensitive 
to reactive oxygen and nitrogen species. 
Komaki-Yasuda K, Kawazu S, Kano S 
FEBS Lett. 2003 Jul 17;547(1-3):140-4 

40j. Molecular characterization of a 2-Cys peroxiredoxin 
from the human malaria parasite Plasmodium falciparum. 
Kawazu S, Komaki K, Tsuji N, Kawai S, Ikenoue N, 
Hatabu T, Ishikawa H, Matsumoto Y, Himeno K, Kano S 
Mol Biochem Parasitol. 2001 Aug;116(1):73-9 

40k. Isolation and functional analysis of two thioredoxin 
peroxidases (peroxiredoxins) from Plasmodium falciparum. 
Krnajski Z, Walter RD, Muller S, Müller S 
Mol Biochem Parasitol. 2001 Apr 6;113(2):303-8 

40L. Thioredoxin peroxidases of the malarial parasite 
Plasmodium falciparum. 
Rahlfs S, Becker K 
Eur J Biochem. 2001 Mar;268(5):1404-9 

41a. The thioredoxin system of the malaria parasite 
Plasmodium falciparum. Glutathione reduction revisited. 
Kanzok SM, Schirmer RH, Turbachova I, Iozef R, Becker K 
J Biol Chem. 2000 Dec 22;275(51):40180-6 

41b. Thioredoxin networks in the malarial parasite 
Plasmodium falciparum. 
Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K 
Antioxid Redox Signal. 2006 Jul-Aug;8(7-8):1227-39 

41c. Thioredoxin and glutathione system of malaria 
parasite Plasmodium falciparum. 
Muller S, Gilberger TW, Krnajski Z, Luersen K, 
Meierjohann S, Walter RD, Muller S, Lüersen K 
Protoplasma. 2001;217(1-3):43-9 

41d. Thioredoxin reductase and glutathione synthesis 
in Plasmodium falciparum. 
Muller S, Muller S 
Redox Rep. 2003;8(5):251-5 

41e. Plasmodium falciparum thioredoxins and glutaredoxins 
as central players in redox metabolism. 
Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K 
Redox Rep. 2003;8(5):246-50 

41f. The thioredoxin system of Plasmodium falciparum 
and other parasites. 
Rahlfs S, Schirmer RH, Becker K 
Cell Mol Life Sci. 2002 Jun;59(6):1024-41 

41g. Thioredoxin, thioredoxin reductase, and thioredoxin 
peroxidase of malaria parasite Plasmodium falciparum. 
Kanzok SM, Rahlfs S, Becker K, Schirmer RH 
Methods Enzymol. 2002;347:370-81 

42a. Plasmodium falciparum thioredoxins and glutaredoxins 
as central players in redox metabolism. 
Rahlfs S, Nickel C, Deponte M, Schirmer RH, Becker K 
Redox Rep. 2003;8(5):246-50 

42b. Plasmodium falciparum possesses a classical 
glutaredoxin and a second, glutaredoxin-like protein 
with a PICOT homology domain. 
Rahlfs S, Fischer M, Becker K 
J Biol Chem. 2001 Oct 5;276(40):37133-40 

42c. Plasmodium falciparum glutaredoxin-like proteins. 
Deponte M, Becker K, Rahlfs S 
Biol Chem. 2005 Jan;386(1):33-40 

43a. Plasmoredoxin, a novel redox-active protein 
unique for malarial parasites. 
Becker K, Kanzok SM, Iozef R, Fischer M, Schirmer RH, 
Rahlfs S 
Eur J Biochem. 2003 Mar;270(6):1057-64 

44a. Double-drug development against antioxidant enzymes 
from Plasmodium falciparum. 
Biot C, Dessolin J, Grellier P, Davioud-Charvet E 
Redox Rep. 2003;8(5):280-3 

44b. Thioredoxin reductase and glutathione synthesis 
in Plasmodium falciparum. 
Muller S, Muller S 
Redox Rep. 2003;8(5):251-5 

44c. Specific inhibitors of Plasmodium falciparum 
thioredoxin reductase as potential antimalarial agents. 
Andricopulo AD, Akoachere MB, Krogh R, Nickel C, 
McLeish MJ, Kenyon GL, Arscott LD, Williams CH Jr, 
Davioud-Charvet E, Becker K 
Bioorg Med Chem Lett. 2006 Apr 15;16(8):2283-92 

44d. Thioredoxin, thioredoxin reductase, and thioredoxin 
peroxidase of malaria parasite Plasmodium falciparum. 
Kanzok SM, Rahlfs S, Becker K, Schirmer RH 
Methods Enzymol. 2002;347:370-81 

44e. Thioredoxin reductase is essential for the survival 
of Plasmodium falciparum erythrocytic stages. 
Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Muller S 
J Biol Chem. 2002 Jul 19;277(29):25970-5;Epub 2002 May 09 

44f. Thioredoxin reductase as a pathophysiological 
factor and drug target. 
Becker K, Gromer S, Schirmer RH, Muller S 
Eur J Biochem. 2000 Oct;267(20):6118-25 

44g. Redox and antioxidant systems of the malaria parasite 
Plasmodium falciparum. 
Muller S 
Mol Microbiol. 2004 Sep;53(5):1291-305 

45a. Gene disruption confirms a critical role for the 
cysteine protease falcipain-2 in hemoglobin hydrolysis 
by Plasmodium falciparum. 
Sijwali PS, Rosenthal PJ 
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4384-9 

45b. Plasmodium falciparum cysteine protease falcipain-2 
cleaves erythrocyte membrane skeletal proteins at late 
stages of parasite development. 
Hanspal M, Dua M, Takakuwa Y, Chishti AH, Mizuno A 
Blood. 2002 Aug 1;100(3):1048-54 

45c. Expression and characterization of the Plasmodium 
falciparum haemoglobinase falcipain-3. 
Sijwali PS, Shenai BR, Gut J, Singh A, Rosenthal PJ 
Biochem J. 2001 Dec 1;360(Pt 2):481-9 

45d. Characterization of native and recombinant falcipain-2, 
a principal trophozoite cysteine protease and essential 
hemoglobinase of Plasmodium falciparum. 
Shenai BR, Sijwali PS, Singh A, Rosenthal PJ 
J Biol Chem. 2000 Sep 15;275(37):29000-10 

45e. Reducing requirements for hemoglobin hydrolysis 
by Plasmodium falciparum cysteine proteases. 
Shenai BR, Rosenthal PJ 
Mol Biochem Parasitol. 2002 Jun;122(1):99-104 

45f. Cysteine proteases of malaria parasites. 
Rosenthal PJ 
Int J Parasitol. 2004 Dec;34(13-14):1489-99 

45g. Responsiveness of parasite Cys His proteases 
to iron redox. 
Lockwood TD 
Parasitol Res. 2006 Dec;100(1):175-81 

45h. Antimalarial activities of novel synthetic cysteine 
protease inhibitors. 
Lee BJ, Singh A, Chiang P, Kemp SJ, Goldman EA, 
Weinhouse MI, Vlasuk GP, Rosenthal PJ 
Antimicrob Agents Chemother. 2003 Dec;47(12):3810-4 

45i. Responsiveness of parasite Cys His proteases to iron redox. 
Lockwood TD 
Parasitol Res. 2006 Dec;100(1):175-81 

46a. Comparative properties of a three-dimensional model 
of Plasmodium falciparum ornithine decarboxylase. 
Birkholtz L, Joubert F, Neitz AW, Louw AI 
Proteins. 2003 Feb 15;50(3):464-73 

46b. The Plasmodium falciparum bifunctional ornithine 
decarboxylase, S-adenosyl-L-methionine decarboxylase, 
enables a well balanced polyamine synthesis without 
domain-domain interaction. 
Wrenger C, Luersen K, Krause T, Muller S, Walter RD 
J Biol Chem. 2001 Aug 10;276(32):29651-6 

46c. The ornithine decarboxylase domain of the 
bifunctional ornithine decarboxylase/S-adenosylmethionine 
decarboxylase of Plasmodium falciparum: 
recombinant expression and catalytic properties 
of two different constructs. 
Krause T, Lüersen K, Wrenger C, Gilberger TW, Müller S, 
Walter RD 
Biochem J. 2000 Dec 1;352 Pt 2:287-92 

46d. In the human malaria parasite Plasmodium falciparum, 
polyamines are synthesized by a bifunctional ornithine 
decarboxylase, S-adenosylmethionine decarboxylase. 
Müller S, Da'dara A, Lüersen K, Wrenger C, Das Gupta R, 
Madhubala R, Walter RD 
J Biol Chem. 2000 Mar 17;275(11):8097-102 

46e. Ornithine decarboxylase of Plasmodium falciparum: 
a peak-function enzyme and its inhibition by chloroquine. 
Königk E, Putfarken B 
Trop Med Parasitol. 1985 Jun;36(2):81-4 

HEME IS AN OXIDANT SENSITIZER

Of particular relevance to treating malaria is the fact that Plasmodial trophozoites living inside red blood cells must digest hemoglobin as their preferred protein source. [47a,47b] They accomplish this by ingesting hemoglobin into an organelle known as the "acid food vacuole". [47c-47h] Incidently, the high concentration of acid in this organelle could serve as an additional site of conversion of chlorite (ClO2-) to the more active chlorine dioxide (ClO2) right inside the parasite. Furthermore, Plasmodia consume 50 to 100 times more glucose than noninfected red blood cells most of which is metabolized to lactic acid a known activator of chlorite. [48a-48b]Next falcipain (a hemoglobin digesting enzyme) hydrolyzes hemoglobin protein to release its nutritional amino acids. [49a-49e] A necessary byproduct of this digestion is the release of 4 heme molecules from each hemoglobin molecule digested. Free heme (also known as ferriprotoporphyrin IX) is redox active and can react with ambient oxygen (O2), an abundance of which is always present in red blood cells. This produces superoxide radical (*OO-), hydrogen peroxide (H2O2) and other reactive oxidant toxic species (ROTS). [50a-50bb]. These can rapidly poison the parasite internally. To protect themselves against this dangerous side-effect of eating blood protein, Plasmodia must maintain a high reductant capacity (an abundance of reduced thiols and NADPH) to quench these ROTS. This is their main mechanism of antioxidant defense. [51a-51n]
Plasmodia must also rapidly and continuously eliminate heme , which is accomplished by two methods. 1) heme is polymerized producing hemozoin. [52a-52k] 2) heme is metabolized in a detoxification process that requires reduced glutathione (GSH). [53a,53b] Therefore any method (especially exposure to oxidants) which limits the availability of reduced glutathione (GSH) will cause a toxic build up of heme and of ROTS inside the parasite cells. Sodium chlorite and chlorine dioxide (the exact agents present in Mr. Humble's treatment) readily oxidize glutathione. [54a,54b] Therefore, a rapid killing of Plasmodia upon taking acidified sodium chlorite orally should be expected.

References:

47a. Plasmodium falciparum: inhibitors of lysosomal 
cysteine proteinases inhibit a trophozoite proteinase 
and block parasite development. 
Rosenthal PJ, McKerrow JH, Rasnick D, Leech JH 
Mol Biochem Parasitol. 1989 Jun 15;35(2):177-83 

47b. Intraerythrocytic Plasmodium falciparum utilizes only 
a fraction of the amino acids derived from the digestion 
of host cell cytosol for the biosynthesis of its proteins. 
Krugliak M, Zhang J, Ginsburg H 
Mol Biochem Parasitol. 2002 Feb;119(2):249-56 

47c. Hemoglobin degradation. 
Goldberg DE 
Curr Top Microbiol Immunol. 2005;295:275-91 

47d. Hemoglobin metabolism in the malaria parasite 
Plasmodium falciparum. 
Francis SE, Sullivan DJ Jr, Goldberg DE 
Annu Rev Microbiol. 1997;51:97-123 

47e. Acidification of the malaria parasite's digestive 
vacuole by a H+-ATPase and a H+-pyrophosphatase. 
Saliba KJ, Allen RJ, Zissis S, Bray PG, Ward SA, Kirk K 
J Biol Chem. 2003 Feb 21;278(8):5605-12 

47f. Hemoglobin degradation in Plasmodium-infected 
red blood cells. 
Goldberg DE 
Semin Cell Biol. 1993 Oct;4(5):355-61 

47g. Plasmodial hemoglobin degradation: 
an ordered pathway in a specialized organelle. 
Goldberg DE 
Infect Agents Dis. 1992 Aug;1(4):207-11 

47h. pH regulation in the intracellular malaria parasite, 
Plasmodium falciparum. H(+) extrusion via a v-type h(+)-atpase. 
Saliba KJ, Kirk K 
J Biol Chem. 1999 Nov 19;274(47):33213-9 

48a. Plasmodium falciparum carbohydrate metabolism: 
a connection between host cell and parasite. 
Roth E Jr 
Blood Cells. 1990;16(2-3):453-60; discussion 461-6 

48b. The effect of Alcide, a new antimicrobial drug, on rat 
blood glutathione and erythrocyte osmotic fragility, in vitro. 
Abdel-Rahman MS, Scatina J 
J Appl Toxicol. 1985 Jun;5(3):178-81 

49a. Development of cysteine protease inhibitors as 
chemotherapy for parasitic diseases: insights on 
safety, target validation, and mechanism of action. 
McKerrow JH 
Int J Parasitol. 1999 Jun;29(6):833-7 

49b. Cysteine proteases of malaria parasites: 
targets for chemotherapy. 
Rosenthal PJ, Sijwali PS, Singh A, Shenai BR 
Curr Pharm Des. 2002;8(18):1659-72 

49c. Proteases of malaria parasites: 
new targets for chemotherapy. 
Rosenthal PJ 
Emerg Infect Dis. 1998 Jan-Mar;4(1):49-57 

49d. Hydrolysis of erythrocyte proteins 
by proteases of malaria parasites. 
Rosenthal PJ 
Curr Opin Hematol. 2002 Mar;9(2):140-5 

49e. Cysteine protease inhibitors as chemotherapy 
for parasitic infections. 
McKerrow JH, Engel JC, Caffrey CR 
Bioorg Med Chem. 1999 Apr;7(4):639-44 

50a. In vitro activity of riboflavin against the human 
malaria parasite Plasmodium falciparum. 
Akompong T, Ghori N, Haldar K 
Antimicrob Agents Chemother. 2000 Ja ;44(1):88-96 

50b. Potentiation of an antimalarial oxidant drug. 
Winter RW, Ignatushchenko M, Ogundahunsi OA, Cornell KA, 
Oduola AM, Hinrichs DJ, Riscoe MK 
Antimicrob Agents Chemother. 1997 Jul;41(7):1449-54 

50c. Hemoglobin metabolism in the malaria parasite 
Plasmodium falciparum. 
Francis SE, Sullivan DJ Jr, Goldberg DE 
Annu Rev Microbiol. 1997;51:97-123 

50d. Identification and characterization of heme-interacting 
proteins in the malaria parasite, Plasmodium falciparum. 
Campanale N, Nickel C, Daubenberger CA, Wehlan DA, 
Gorman JJ, Klonis N, Becker K, Tilley L 
J Biol Chem. 2003 Jul 25;278(30):27354-61 

50e. The redox status of malaria-infected erythrocytes: 
an overview with an emphasis on unresolved problems. 
Ginsburg H, Atamna H 
Parasite. 1994 Mar;1(1):5-13 

50f. Redox and antioxidant systems of the malaria parasite 
Plasmodium falciparum. 
Muller S 
Mol Microbiol. 2004 Sep;53(5):1291-305 

50g. Origin of reactive oxygen species in erythrocytes 
infected with Plasmodium falciparum. 
Atamna H, Ginsburg H 
Mol Biochem Parasitol. 1993 Oct;61(2):231-41 
Erratum in:    Mol Biochem Parasitol 1994 Feb;63(2):312 

50h. Oxidative stress in malaria parasite-infected 
erythrocytes: host-parasite interactions. 
Becker K, Tilley L, Vennerstrom JL, Roberts D, 
Rogerson S, Ginsburg H 
Int J Parasitol. 2004 Feb;34(2):163-89 

50i. Clotrimazole binds to heme and enhances heme-dependent 
hemolysis: proposed antimalarial mechanism of clotrimazole. 
Huy NT, Kamei K, Yamamoto T, Kondo Y, Kanaori K, 
Takano R, Tajima K, Hara S 
J Biol Chem. 2002 Feb 8;277(6):4152-8 

50j. Illumination of the malaria parasite Plasmodium 
falciparum alters intracellular pH. Implications 
for live cell imaging. 
Wissing F, Sanchez CP, Rohrbach P, Ricken S, Lanzer M 
J Biol Chem. 2002 Oct 4;277(40):37747-55 

50k. Potentiation of an antimalarial oxidant drug. 
Winter RW, Ignatushchenko M, Ogundahunsi OA, Cornell KA, 
Oduola AM, Hinrichs DJ, Riscoe MK 
Antimicrob Agents Chemother. 1997 Jul;41(7):1449-54 

50L. The iron environment in heme and heme-antimalarial 
complexes of pharmacological interest. 
Adams PA, Berman PA, Egan TJ, Marsh PJ, Silver J 
J Inorg Biochem. 1996 Jul;63(1):69-77 

50m. Lysis of malarial parasites and erythrocytes 
by ferriprotoporphyrin IX-chloroquine and the inhibition 
of this effect by proteins. 
Zhang Y, Hempelmann E 
Biochem Pharmacol. 1987 Apr 15;36(8):1267-73 

50n. Ferriprotoporphyrin IX: a mediator of the antimalarial 
action of oxidants and 4-aminoquinoline drugs. 
Fitch CD, Dutta P, Kanjananggulpan P, Chevli R 
Prog Clin Biol Res. 1984;155:119-30 

50o. Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX 
and chloroquine. Chemotherapeutic implications. 
Chou AC, Fitch CD 
J Clin Invest. 1980 Oct;66(4):856-8 

50p. Is hemin responsible for the susceptibility 
of Plasmodia to oxidant stress? 
Har-El R, Marva E, Chevion M, Golenser J 
Free Radic Res Commun. 1993;18(5):279-90 

50q. The effects of ascorbate-induced free radicals 
on Plasmodium falciparum. 
Marva E, Golenser J, Cohen A, Kitrossky N, Har-el R, 
Chevion M 
Trop Med Parasitol. 1992 Mar;43(1):17-23 

50r. Induction of oxidant stress by iron available 
in advanced forms of Plasmodium falciparum. 
Golenser J, Marva E, Har-El R, Chevion M 
Free Radic Res Commun. 1991;12-13 Pt 2:639-43 

50s. Growth inhibition of Plasmodium falciparum involving 
carbon centered iron-chelate radical (L., X-)-Fe(III) 
based on pyridoxal-betaine. A novel type of antimalarials 
active against chloroquine-resistant parasites. 
Iheanacho EN, Sarel S, Samuni A, Avramovici-Grisaru S, 
Spira DT 
Free Radic Res Commun. 1991;15(1):1-10 

50t. Detection of short-chain carbonyl products of lipid 
peroxidation from malaria-parasite (Plasmodium vinckei)-
infected red blood cells exposed to oxidative stress. 
Buffinton GD, Hunt NH, Cowden WB, Clark IA 
Biochem J. 1988 Jan 1;249(1):63-8 

50u. Ferriprotoporphyrin IX: a mediator of the antimalarial 
action of oxidants and 4-aminoquinoline drugs. 
Fitch CD, Dutta P, Kanjananggulpan P, Chevli R 
Prog Clin Biol Res. 1984;155:119-30 

50v. Influence of chloroquine treatment and Plasmodium 
falciparum malaria infection on some enzymatic and 
non-enzymatic antioxidant defense indices in humans. 
Farombi EO, Shyntum YY, Emerole GO 
Drug Chem Toxicol. 2003 Feb;26(1):59-71 

50w. Oxidative stress in patients with non-complicated malaria. 
Pabón A, Carmona J, Burgos LC, Blair S 
Clin Biochem. 2003 Feb;36(1):71-8 

50x. Evidence for erythrocyte lipid peroxidation 
in acute falciparum malaria. 
Das BS, Nanda NK 
Trans R Soc Trop Med Hyg. 1999 Jan-Feb;93(1):58-62 

50y. Metal chelators/antioxidants: approaches to protect 
erythrocytic oxidative stress injury during Plasmodium 
berghei infection in Mastomys coucha.  
Srivastava PJ, Chandra S, Arif AJ, Singh C, Panday V 
Pharmacol Res. 1999 Sep;40(3):239-41 

50z. Role of free radicals in Plasmodium berghei infected 
Mastomys natalensis brain. 
Mahdi AA, Chander R, Kapoor NK, Ahmad S 
Indian J Exp Biol. 1992 Dec;30(12):1193-6 

50aa. Plasmodium falciparum induced perturbations 
of the erythrocyte antioxidant system. 
Mohan K, Dubey ML, Ganguly NK, Mahajan RC 
Clin Chim Acta. 1992 Jul 31;209(1-2):19-26 

50bb. Effect of radical treatment on erythrocyte lipid 
peroxidation in Plasmodium vivax-infected malaria patients. 
Mathews ST, Selvam R 
Biochem Int. 1991 Sep;25(2):211-20 

51a. The survival of Plasmodium Under oxidant stress. 
Golenser J, Marva E, Chevion M 
Parasitol Today. 1991 Jun;7(6):142-6 

51b. Hexose-monophosphate shunt activity in intact 
Plasmodium falciparum-infected erythrocytes and 
in free parasites. 
Atamna H, Pascarmona G, Ginsburg H 
Mol Biochem Parasitol. 1994 Sep;67(1):79-89 

51c. Vampires, Pasteur and reactive oxygen species. 
Is the switch from aerobic to anaerobic metabolism 
a preventive antioxidant defence in blood-feeding 
parasites? 
Oliveira PL, Oliveira MF 
FEBS Lett. 2002 Aug 14;525(1-3):3-6 

51d. Oxidative stress and malaria-infected erythrocytes. 
Mishra NC, Kabilan L, Sharma A 
Indian J Malariol. 1994 Jun;31(2):77-87 

51e. Oxidative stress and antioxidant defence mechanism 
in Plasmodium vivax malaria before and after chloroquine 
treatment. 
Sarin K, Kumar A, Prakash A, Sharma A 
Indian J Malariol. 1993 Sep;30(3):127-33 

51f. Lipid peroxidation in Plasmodium falciparum-
parasitized human erythrocytes. 
Simões AP, van den Berg JJ, Roelofsen B, Op den Kamp JA 
Arch Biochem Biophys. 1992 Nov 1;298(2):651-7 

51g. The adaptation of Plasmodium falciparum to oxidative 
stress in G6PD deficient human erythrocytes. 
Roth E Jr, Schulman S 
Br J Haematol. 1988 Nov;70(3):363-7 

51h. Pathways for the reduction of oxidized glutathione 
in the Plasmodium falciparum-infected erythrocyte: 
can parasite enzymes replace host red cell 
glucose-6-phosphate dehydrogenase? 
Roth EF Jr, Schulman S, Vanderberg J, Olson J 
Blood. 1986 Mar;67(3):827-30 

51i. The plasmodial apicoplast was retained under 
evolutionary selective pressure to assuage blood stage 
oxidative stress. 
Toler S 
Med Hypotheses. 2005;65(4):683-90 

51j. Glutathione--functions and metabolism in the malarial 
parasite Plasmodium falciparum. 
Becker K, Rahlfs S, Nickel C, Schirmer RH 
Biol Chem. 2003 Apr;384(4):551-66 

51k. Oxidative stress and antioxidant defenses: 
a target for the treatment of diseases caused 
by parasitic protozoa. 
Turrens JF 
Mol Aspects Med. 2004 Feb-Apr;25(1-2):211-20 

51L. Vampires, Pasteur and reactive oxygen species. 
Is the switch from aerobic to anaerobic metabolism 
a preventive antioxidant defence in blood-feeding 
parasites? 
Oliveira PL, Oliveira MF 
FEBS Lett. 2002 Aug 14;525(1-3):3-6 

51m. The malaria parasite supplies glutathione to its host 
cell--investigation of glutathione transport and metabolism 
in human erythrocytes infected with Plasmodium falciparum. 
Atamna H, Ginsburg H 
Eur J Biochem. 1997 Dec 15;250(3):670-9 

51n. Redox processes in malaria and other parasitic diseases. 
Determination of intracellular glutathione. 
Becker K, Gui M, Traxler A, Kirsten C, Schirmer RH 
Histochemistry. 1994 Nov;102(5):389-95 

52a. Effect of antifungal azoles on the heme detoxification 
system of malarial parasite. 
Huy NT, Kamei K, Kondo Y, Serada S, Kanaori K, Takano R, 
Tajima K, Hara S 
J Biochem (Tokyo). 2002 Mar;131(3):437-44 

52b. Malarial haemozoin/beta-haematin supports haem 
polymerization in the absence of protein. 
Dorn A, Stoffel R, Matile H, Bubendorf A, Ridley RG 
Nature. 1995 Mar 16;374(6519):269-71 

52c. Plasmodium falciparum histidine-rich protein-2 
(PfHRP2) modulates the redox activity 
of ferri-protoporphyrin IX (FePPIX): peroxidase-like 
activity of the PfHRP2-FePPIX complex.
Mashima R, Tilley L, Siomos MA, Papalexis V, 
Raftery MJ, Stocker R 
J Biol Chem. 2002 Apr 26;277(17):14514-20 

52d. Hemoglobin degradation in malaria-infected erythrocytes 
determined from live cell magnetophoresis. 
Moore LR, Fujioka H, Williams PS, Chalmers JJ, Grimberg B, 
Zimmerman PA, Zborowski M 
FASEB J. 2006 Apr;20(6):747-9 

52e. A physiochemical mechanism of hemozoin (beta-hematin) 
synthesis by malaria parasite. 
Tripathi AK, Garg SK, Tekwani BL 
Biochem Biophys Res Commun. 2002 Jan 11;290(1):595-601 

52f. Histidine-rich protein 2 of the malaria parasite, 
Plasmodium falciparum, is involved in detoxification 
of the by-products of haemoglobin degradation. 
Papalexis V, Siomos MA, Campanale N, Guo X, Kocak G, 
Foley M, Tilley L 
Mol Biochem Parasitol. 2001 Jun;115(1):77-86 

52g. Theories on malarial pigment formation and quinoline 
action. 
Sullivan DJ 
Int J Parasitol. 2002 Dec 4;32(13):1645-53 

52h. A comparison and analysis of several ways to promote 
haematin (haem) polymerisation and an assessment 
of its initiation in vitro. 
Dorn A, Vippagunta SR, Matile H, Bubendorf A, 
Vennerstrom JL, Ridley RG 
Biochem Pharmacol. 1998 Mar 15;55(6):737-47 

52i. Plasmodium hemozoin formation mediated 
by histidine-rich proteins. 
Sullivan DJ Jr, Gluzman IY, Goldberg DE 
Science. 1996 Jan 12;271(5246):219-22 

52j. An iron-carboxylate bond links the heme units 
of malaria pigment. 
Slater AF, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, 
Cerami A, Henderson GB 
Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):325-9 

52k. Hemozoin induces macrophage chemokine expression through 
oxidative stress-dependent and -independent mechanisms. 
Jaramillo M, Godbout M, Olivier M 
J Immunol. 2005 Jan 1;174(1):475-84 

53a. A non-radiolabeled heme-GSH interaction test 
for the screening of antimalarial compounds. 
Garavito G, Monje MC, Maurel S, Valentin A, Nepveu F, 
Deharo E 
Exp Parasitol. 2007 Jan 23 

53b. Effect of antifungal azoles on the heme detoxification 
system of malarial parasite. 
Huy NT, Kamei K, Kondo Y, Serada S, Kanaori K, Takano R, 
Tajima K, Hara S 
J Biochem (Tokyo). 2002 Mar;131(3):437-44 

54a. A comparison of the effects of ocular preservatives 
on mammalian and microbial ATP and glutathione levels. 
Ingram PR, Pitt AR, Wilson CG, Olejnik O, Spickett CM 
Free Radic Res. 2004 Jul;38(7):739-50 

54b. The effect of Alcide, a new antimicrobial drug, 
on rat blood glutathione and erythrocyte osmotic 
fragility, in vitro. 
Abdel-Rahman MS, Scatina J 
J Appl Toxicol. 1985 Jun;5(3):178-81 

OVERCOMING ANTIBIOTIC RESISTANCE WITH OXIDATION

Now the issue of resistance of Plasmodium species to commonly used antiprotozoal antibiotics must be addressed. Quinine, chloroquine, mefloquine, quinacrine, amodiaquine, primaquine and other quinoline-like antibiotics all work by blocking the heme detoxifying system inside the trophozoites. [55a-55gg] Many Plasmodial strains against which quinolines have repeatedly been used have found ways to adapt to these drugs and to acquire resistance. Research into the mechanisms of resistance has found that often resistance is accomplished by a meere upregulation of glutathione production and utilization. [56a-56j] Consequently oxidizing or otherwise depleting glutathione inside the parasite usually restores sensitivity to the quinoline antibiotics. [57a-57f] Therefore, protocols combining the use of oxidants with quinolines are under developement and already showing signs of success. [57g] In this context let us consider that no amount of intraplasmodial glutathione (GSH) could ever resist exposure to a suffient dose of chlorine dioxide (ClO2). Note that each molecule of ClO2 can disable 1 to 5 molecules of glutathione depending on the reaction mechanism.

2(GSH) + 2(ClO2) -> 1(GSSG) + 2(H+) + 2(ClO2-)
or 10(GSH) + 2(ClO2) -> 5(GSSG) + 2(H+) + 2(Cl-) + 4(H2O)

References:

55a. Inhibition of the peroxidative degradation of haem as 
the basis of action of chloroquine and other quinoline 
antimalarials. 
Loria P, Miller S, Foley M, Tilley L 
Biochem J. 1999 Apr 15;339 ( Pt 2):363-70 

55b. Quinoline antimalarials: mechanisms of action and 
resistance and prospects for new agents. 
Foley M, Tilley L 
Pharmacol Ther. 1998 Jul;79(1):55-87 

55c. Quinoline antimalarials: 
mechanisms of action and resistance. 
Foley M,  illey L 
Int J Parasitol. 1997 Feb;27(2):231-40 

55d. Inhibition by anti-malarial drugs of haemoglobin 
denaturation and iron release in acidified red blood cell 
lysates--a possible mechanism of their anti-malarial effect?
Gabay T, Krugliak M, Shalmiev G, Ginsburg H 
Parasitology. 1994 May;108 ( Pt 4):371-81 

55e. Chloroquine: mechanism of drug action and resistance 
in Plasmodium falciparum. 
Slater AF 
Pharmacol Ther. 1993 Feb-Mar;57(2-3):203-35 

55f. The treatment of Plasmodium falciparum-infected 
erythrocytes with chloroquine leads to accumulation 
of ferriprotoporphyrin IX bound to particular parasite 
proteins and to the inhibition of the parasite's 
6-phosphogluconate dehydrogenase. 
Famin O, Ginsburg H 
Parasite. 2003 Mar;10(1):39-50 

55g. Chloroquine - some open questions on its antimalarial 
mode of action and resistance. 
Ginsburg H, Krugliak M 
Drug Resist Updat. 1999 Jun;2(3):180-187 

55h. Kinetics of inhibition of glutathione-mediated degradation 
of ferriprotoporphyrin IX by antimalarial drugs. 
Famin O, Krugliak M, Ginsburg H 
Biochem Pharmacol. 1999 Jul 1;58(1):59-68 

55i. The fate of ferriprotorphyrin IX in malaria infected 
erythrocytes in conjunction with the mode of action 
of antimalarial drugs. 
Zhang J, Krugliak M, Ginsburg H 
Mol Biochem Parasitol. 1999 Mar 15;99(1):129-41 

55j. Inhibition of glutathione-dependent degradation 
of heme by chloroquine and amodiaquine as a possible basis 
for their antimalarial mode of action. 
Ginsburg H, Famin O, Zhang J, Krugliak M 
Biochem Pharmacol. 1998 Nov 15;56(10):1305-13 

55k. Antimalarial drugs inhibiting hemozoin (beta-hematin) 
formation: a mechanistic update. 
Kumar S, Guha M, Choubey V, Maity P, Bandyopadhyay U 
Life Sci. 2007 Feb 6;80(9):813-28 

55L. A medicinal chemistry perspective on 4-aminoquinoline 
antimalarial drugs. 
O'Neill PM, Ward SA, Berry NG, Jeyadevan JP, Biagini GA, 
Asadollaly E, Park BK, Bray PG 
Curr Top Med Chem. 2006;6(5):479-507 

55m. Heme Aggregation inhibitors: antimalarial drugs 
targeting an essential biomineralization process. 
Ziegler J, Linck R, Wright DW 
Curr Med Chem. 2001 Feb;8(2):171-89 

55n. Structural specificity of chloroquine-hematin 
binding related to inhibition of hematin polymerization 
and parasite growth. 
Vippagunta SR, Dorn A, Matile H, Bhattacharjee AK, 
Karle JM, Ellis WY, Ridley RG, Vennerstrom JL 
J Med Chem. 1999 Nov 4;42(22):4630-9 

55o. A common mechanism for blockade of heme 
polymerization by antimalarial quinolines. 
Sullivan DJ Jr, Matile H, Ridley RG, Goldberg DE 
J Biol Chem. 1998 Nov 20;273(47):31103-7 

55p. Central role of hemoglobin degradation in mechanisms 
of action of 4-aminoquinolines, quinoline methanols, 
and phenanthrene methanols. 
Mungthin M, Bray PG, Ridley RG, Ward SA 
Antimicrob Agents Chemother. 1998 Nov;42(11):2973-7 

55q. Access to hematin: the basis of chloroquine resistance. 
Bray PG, Mungthin M, Ridley RG, Ward SA 
Mol Pharmacol. 1998 Jul;54(1):170-9 

55r. Involvement of heme in the antimalarial action of chloroquine.
Fitch CD 
Trans Am Clin Climatol Assoc. 1998;109:97-105; discussion 105-6 

55s. Relationship between antimalarial drug activity, 
accumulation, and inhibition of heme polymerization 
in Plasmodium falciparum in vitro. 
Hawley SR, Bray PG, Mungthin M, Atkinson JD, O'Neill PM, 
Ward SA 
Antimicrob Agents Chemother. 1998 Mar;42(3):682-6 

55t. Haematin (haem) polymerization and its inhibition 
by quinoline antimalarials. 
Ridley RG, Dorn A, Vippagunta SR, Vennerstrom JL 
Ann Trop Med Parasitol. 1997 Jul;91(5):559-66 

55u. Heme polymerase activity and the stage specificity 
of antimalarial action of chloroquine. 
Orjih AU 
J Pharmacol Exp Ther. 1997 Jul;282(1):108-12 

55v. Xanthones as antimalarial agents; 
studies of a possible mode of action. 
Ignatushchenko MV, Winter RW, Bächinger HP, Hinrichs DJ, 
Riscoe MK 
FEBS Lett. 1997 Jun 2;409(1):67-73 

55w. Depolymerization of malarial hemozoin: a novel reaction 
initiated by blood schizontocidal antimalarials. 
Pandey AV, Tekwani BL 
FEBS Lett. 1997 Feb 3;402(2-3):236-40 

55x. On the molecular mechanism of chloroquine's 
antimalarial action. 
Sullivan DJ Jr, Gluzman IY, Russell DG, Goldberg DE 
Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11865-70 

55y. Hemoglobin catabolism and the killing of intraerythrocytic 
Plasmodium falciparum by chloroquine. 
Orjih AU, Ryerse JS, Fitch CD 
Experientia. 1994 Jan 15;50(1):34-9 

55z. Antimalarial 4-aminoquinolines: mode of action 
and pharmacokinetics. 
Pussard E, Verdier F 
Fundam Clin Pharmacol. 1994;8(1):1-17 

55aa. Hemoglobin catabolism and host-parasite heme balance 
in chloroquine-sensitive and chloroquine-resistant 
Plasmodium berghei infections. 
Wood PA, Eaton JW 
Am J Trop Med Hyg. 1993 Apr;48(4):465-72 

55bb. Quinoline-containing antimalarials--
mode of action, drug resistance and its reversal. 
An update with unresolved puzzles. 
Ginsburg H, Krugliak M 
Biochem Pharmacol. 1992 Jan 9;43(1):63-70 

55cc. Inhibition by chloroquine of a novel haem 
polymerase enzyme activity in malaria trophozoites. 
Slater AF, Cerami A 
Nature. 1992 Jan 9;355(6356):167-9 
Comment in:    Nature. 1992 Jan 9;355(6356):108-9 

55dd. Heme polymerase: modulation by chloroquine treatment 
of a rodent malaria. 
Chou AC, Fitch CD 
Life Sci. 1992;51(26):2073-8 

55ee. Mode of action of antimalarial drugs. 
Fitch CD 
Ciba Found Symp. 1983;94:222-32 

55ff. Binding of antimalarial drugs to hemozoin 
from Plasmodium berghei. 
Jearnpipatkul A, Govitrapong P, Yuthavong Y, Wilairat P, 
Panijpan B 
Experientia. 1980 Sep 15;36(9):1063-4 

55gg. Influence of chloroquine treatment and Plasmodium 
falciparum malaria infection on some enzymatic and 
non-enzymatic antioxidant defense indices in humans. 
Farombi EO, Shyntum YY, Emerole GO 
Drug Chem Toxicol. 2003 Feb;26(1):59-71 

56a. Regulation of intracellular glutathione levels 
in erythrocytes infected with chloroquine-sensitive 
and chloroquine-resistant Plasmodium falciparum. 
Meierjohann S, Walter RD, Muller S, Müller S 
Biochem J. 2002 Dec 15;368(Pt 3):761-8 

56b. The malaria parasite supplies glutathione to its 
host cell--investigation of glutathione transport and 
metabolism in human erythrocytes infected with 
Plasmodium falciparum. 
Atamna H, Ginsburg H 
Eur J Biochem. 1997 Dec 15;250(3):670-9 

56c. Is the expression of genes encoding enzymes of 
glutathione (GSH) metabolism involved in chloroquine 
resistance in Plasmodium chabaudi parasites? 
Ferreira ID, Nogueira F, Borges ST, do Rosario VE, 
Cravo P, do Rosyo VE 
Mol Biochem Parasitol. 2004 Jul;136(1):43-50 

56d. Plasmodium falciparum glutathione metabolism and growth 
are independent of glutathione system of host erythrocyte. 
Ayi K, Cappadoro M, Branca M, Turrini F, Arese P 
FEBS Lett. 1998 Mar 13;424(3):257-61 

56e. Glutathione-S-transferases from chloroquine-resistant 
and -sensitive strains of Plasmodium falciparum: 
what are their differences? 
Rojpibulstit P, Kangsadalampai S, Ratanavalachai T, 
Denduangboripant J, Chavalitshewinkoon-Petmitr P 
Southeast Asian J Trop Med Public Health. 2004 Jun;35(2):292-9 

56f. Plasmodium berghei: analysis of the gamma-glutamylcysteine 
synthetase gene in drug-resistant lines. 
Perez-Rosado J, Gervais GW, Ferrer-Rodriguez I, Peters W, 
Serrano AE, Pérez-Rosado J, Ferrer-Rodríguez I 
Exp Parasitol. 2002 Aug;101(4):175-82 

56g. Glutathione-S-transferase activity in malarial parasites. 
Srivastava P, Puri SK, Kamboj KK, Pandey VC 
Trop Med Int Health. 1999 Apr;4(4):251-4 

56h. Role of glutathione in the detoxification of 
ferriprotoporphyrin IX in chloroquine resistant 
Plasmodium berghei. 
Platel DF, Mangou F, Tribouley-Duret J 
Mol Biochem Parasitol. 1999 Jan 25;98(2):215-23 

56i. Plasmodium berghei: implication of intracellular 
glutathione and its related enzyme in chloroquine 
resistance in vivo. 
Dubois VL, Platel DF, Pauly G, Tribouley-Duret J 
Exp Parasitol. 1995 Aug;81(1):117-24 

56j. Amodiaquine failure associated with erythrocytic 
glutathione in Plasmodium falciparum malaria. 
Zuluaga L, Pabon A, Lopez C, Ochoa A, Blair S 
Malar J. 2007 Apr 23;6(1):47 

57a. A prodrug form of a Plasmodium falciparum glutathione 
reductase inhibitor conjugated with a 4-anilinoquinoline. 
Davioud-Charvet E, Delarue S, Biot C, Schwobel B, Boehme CC, 
Mussigbrodt A, Maes L, Sergheraert C, Grellier P, 
Schirmer RH, Becker K, Schwöbel B, Müssigbrodt A 
J Med Chem. 2001 Nov 22;44(24):4268-76 

57b. Deletion of the parasite-specific insertions and 
mutation of the catalytic triad in glutathione 
reductase from chloroquine-sensitive Plasmodium 
falciparum 3D7. 
Gilberger TW, Schirmer RH, Walter RD, Müller S 
Mol Biochem Parasitol. 2000 Apr 15;107(2):169-79 

57c. Potentiation of the antimalarial action of chloroquine 
in rodent malaria by drugs known to reduce cellular 
glutathione levels. 
Deharo E, Barkan D, Krugliak M, Golenser J, Ginsburg H 
Biochem Pharmacol. 2003 Sep 1;66(5):809-17 

57d. Glutathione is involved in the antimalarial action 
of chloroquine and its modulation affects drug 
sensitivity of human and murine species of Plasmodium. 
Ginsburg H, Golenser J 
Redox Rep. 2003;8(5):276-9 

57e. Double-drug development against antioxidant enzymes 
from Plasmodium falciparum. 
Biot C, Dessolin J, Grellier P, Davioud-Charvet E 
Redox Rep. 2003;8(5):280-3 

57f. Plasmodium falciparum: in vitro interactions 
of artemisinin with amodiaquine, pyronaridine, 
and chloroquine 
Gupta S, Thapar MM, Mariga ST, Wernsdorfer WH, Bjorkman A 
Exp Parasitol. 2002 Jan;100(1):28-35 

57g. Potentiation of chloroquine activity against Plasmodium 
falciparum by the peroxidase-hydrogen peroxide system. 
Malhotra K, Salmon D, Le Bras J, Vilde JL 
Antimicrob Agents Chemother. 1990 Oct;34(10):1981-5 

SOME INCOMPATIBILITIES

Acidified sodium chlorite could provide a powerful new opportunity to improve or to restore sensitivity to quinolines by virtue of its oxidative power. However, quinolines contain secondary or tertiary amino groups which react with chlorine dioxide in such a way that both could destroy each other. Some possible strategies to resolve this incompatibility are suggested below.
  1. Acidified sodium chlorite could be used as explained above only as a solo therapy.
  2. Quinoline administration could be withheld until after the acidified sodium chorite has completed its action.
  3. Patients already preloaded with a quinoline could stop this, wait a suitable period of time for this to wash out, then administer the acidified sodium chlorite.
  4. The quinoline could remain in use and while the less active sodium chlorite is administered without acid. This should retain plenty of oxidant effectiveness without destroying any quinoline or wasting too much oxidant.
  5. Switch from a quinoline to an endoperoxide (such as artemisinin) or to a quinone (such as atovaquone) before using acidified sodium chlorite, as these may be less sensitive toward destruction by chlorine dioxide.
Similar problems apply to methylene blue and many other drugs if they have an unoxidized sulfur atom, a phenol group, a secondary amine or a tertiary amine. Such are also very reactive with the chlorine dioxide component. [58a]

References:

58a. Oxidation of pharmaceuticals during water treatment 
with chlorine dioxide. 
Huber MM, Korhonen S, Ternes TA, von Gunten U 
Water Res. 2005 Sep;39(15):3607-17 

REDUCTANT RECOVERY SYSTEMS

Living things possess a recovery system to rescue oxidized sulfur compounds. It operates through donation of hydrogen atoms to these compounds and thereby restores their original condition as thiols. [59a,59b]

2 [H] + (GSSG) -> 2(GSH)

This system is known as the hexose monophophate shunt. [59c,59d] A key player in this system is the enzyme glucose- 6-phosphate-dehydrogenase (G6PDH). Patients with a genetic defect of G6PDH, known as glucose-6-phosphate-dehydrogenase deficiency disease, are especially sensitive to oxidants and to prooxidant drugs. However, this genetic disease has a benefit in that such individuals are naturally resistant to malaria. They can still catch malaria, but it is much less severe in them, since they permanently lack the enzyme necessary to assist the parasite in reactivating glutathione and other oxidized thiols. [60a-60i] Chlorine dioxide (ClO2) has been shown to oxidize and denature G6PDH by reaction with tyrosine and tryptophan residues inside the enzyme. [61a] Furthermore, G6PDH is sensitive to inhibition by sodium chlorate (NaClO3), another member of the chlorine oxide family of compounds. [61b,61c,61d] Sodium chlorate (NaClO3) is a trace ingredient present in Jim Humble's antimalarial solution. Some sodium chlorate (NaClO3) should also be produced in vivo by a slow reaction of chlorine dioxide (ClO2) with water under alkaline conditions [61e].

2(ClO2) + 2(OH-) -> (ClO2-) + (ClO3-) + H2O

The Plasmodia may attempt to restore any thiols (RSH) lost to oxidation. However, this becomes more difficult as G6PDH is inhibited by chlorine dioxide (ClO2) or by chlorate (ClO3-).

References:

59a. Malarial parasite hexokinase and hexokinase-dependent 
glutathione reduction in the Plasmodium falciparum 
infected human erythrocyte. 
Roth EF Jr 
J Biol Chem. 1987 Nov 15;262(32):15678-82 

59b. Double-drug development against antioxidant enzymes 
from Plasmodium falciparum. 
Biot C, Dessolin J, Grellier P, Davioud-Charvet E 
Redox Rep. 2003;8(5):280-3 

59c. Plasmodium falciparum carbohydrate metabolism: 
a connection between host cell and parasite. 
Roth E Jr. 
Blood Cells. 1990;16(2-3):453-60; discussion 461-6 

59d. Hexose-monophosphate shunt activity in intact 
Plasmodium falciparum-infected erythrocytes and 
in free parasites. 
Atamna H, Pascarmona G, Ginsburg H 
Mol Biochem Parasitol. 1994 Sep;67(1):79-89 

60a. Redox metabolism in glucose-6-phosphate dehydrogenase 
deficient erythrocytes and its relation to antimalarial 
chemotherapy. 
Ginsburg H, Golenser J 
Parassitologia. 1999 Sep;41(1-3):309-11 

60b. Plasmodium falciparum: thiol status and growth 
in normal and glucose-6-phosphate dehydrogenase 
deficient human erythrocytes. 
Miller J, Golenser J, Spira DT, Kosower NS 
Exp Parasitol. 1984 Jun;57(3):239-47 

60c. Plasmodium berghei: dehydroepiandrosterone sulfate 
reverses chloroquino-resistance in experimental malaria 
infection; correlation with glucose 6-phosphate 
dehydrogenase and glutathione synthesis pathway. 
Safeukui I, Mangou F, Malvy D, Vincendeau P, 
Mossalayi D, Haumont G, Vatan R, Olliaro P, Millet P 
Biochem Pharmacol. 2004 Nov 15;68(10):1903-10 

60d. Resistance of glucose-6-phosphate dehydrogenase 
deficiency to malaria: effects of fava bean hydroxypyrimidine 
glucosides on Plasmodium falciparum growth in culture and 
on the phagocytosis of infected cells. 
Ginsburg H, Atamna H, Shalmiev G, Kanaani J, Krugliak M 
Parasitology. 1996 Jul;113 ( Pt 1):7-18 

60e. Inhibition of the intraerythrocytic development 
of Plasmodium falciparum in glucose-6-phosphate 
dehydrogenase deficient erythrocytes is enhanced 
by oxidants and by crisis form factor. 
Golenser J, Miller J, Spira DT, Kosower NS, 
Vande Waa JA, Jensen JB 
Trop Med Parasitol. 1988 Dec;39(4):273-6 

60f. Ribose metabolism and nucleic acid synthesis in normal 
and glucose-6-phosphate dehydrogenase-deficient human 
erythrocytes infected with Plasmodium falciparum. 
Roth EF Jr, Ruprecht RM, Schulman S, Vanderberg J, Olson JA 
J Clin Invest. 1986 Apr;77(4):1129-35 

60g. The effect of X chromosome inactivation on the 
inhibition of Plasmodium falciparum malaria growth 
by glucose-6-phosphate-dehydrogenase-deficient red cells. 
Roth EF Jr, Raventos Suarez C, Rinaldi A, Nagel RL 
Blood. 1983 Oct;62(4):866-8 

60h. Excess release of ferriheme in G6PD-deficient 
erythrocytes: possible cause of hemolysis and 
resistance to malaria. 
Janney SK, Joist JJ, Fitch CD 
Blood. 1986 Feb;67(2):331-3 

60i. Susceptibility to hydrogen peroxide of Plasmodium falciparum 
infecting glucose-6-phosphate dehydrogenase-deficient erythrocytes. 
Kamchonwongpaisan S, Bunyaratvej A, Wanachiwanawin W, Yuthavong Y 
Parasitology. 1989 Oct;99 Pt 2:171-4 

61a. Denaturation of Protein by Chlorine Dioxide: 
Oxidative Modification of Tryptophan and Tyrosine Residues. 
Ogata N 
Biochemistry. 2007 Mar 31 

61b. Chlorate poisoning: mechanism of toxicity. 
Steffen C, Wetzel E 
Toxicology. 1993 Nov 12;84(1-3):217-31 

61c. Erythrocyte membrane alterations as the basis 
of chlorate toxicity. 
Singelmann E, Wetzel E, Adler G, Steffen C 
Toxicology. 1984 Mar;30(2):135-47 

61d. Chlorate poisoning: mechanism of toxicity.  
Steffen C, Wetzel E 
Toxicology. 1993 Nov 12;84(1-3):217-31 

61e. Inorganic Chemistry An Advanced Textbook. 
Moeller T 
p 440 
John Wiley & Sons, Inc. 

TARGETING IRON

While most available literature refers to redox imbalances causing depletion of necessary thiols. Other mechanisms of toxicity of the oxides of chlorine against Plasmodia should also be considered. Oxides of chlorine are generally rapidly reactive with ferrous iron (Fe++) converting it to ferric (Fe+++). [62a-62d] This explains why in cases of overdosed exposures to oxides of chlorine such as sodium chlorite (NaClO2) there was a notable rise in methemoglobin levels. [63a,63b] Methemoglobin is a metabolically inactive form of hemoglobin in which its ferrous iron (Fe++) cofactor has been oxidized to ferric (Fe+++). In living things including parasites iron is a necessary cofactor for many enzymes. [64a-64f] Thus it is reasonable to expect that any damage to Plasmodia caused by oxides of chlorine is compounded by conversion of ferrous (Fe++) cofactors to ferric (Fe+++) or other alterations of iron compounds. [65a-65g] Superoxide dismutase (SOD) inside Plasmodial cells also utilizes iron in its active center. [66a-66m] Chlorine dioxide also oxidizes manganese. [67a]

References:

62a. The impact of ferrous ion reduction of chlorite ion 
on drinking water process performance. 
Henderson R, Carlson K, Gregory D 
Water Res. 2001 Dec;35(18):4464-73 

62b. Removal of chlorine dioxide disinfection 
by-products by ferrous salts. 
Katz A, Narkis N 
Water Res. 2001 Jan;35(1):101-8 

62c. Chlorine dioxide reduction by aqueous iron(II) through 
outer-sphere and inner-sphere electron-transfer pathways. 
Wang L, Odeh IN, Margerum DW 
Inorg Chem. 2004 Nov 15;43(23):7545-51 

62d. Electrochemical metalloporphyrin-catalyzed reduction 
of chlorite. 
Collman JP, Boulatov R, Sunderland CJ, Shiryaeva IM, 
Berg KE 
J Am Chem Soc. 2002 Sep 11;124(36):10670-1 

63a. Potency ranking of methemoglobin-forming agents. 
French CL, Yaun SS, Baldwin LA, Leonard DA, Zhao XQ, 
Calabrese EJ 
J Appl Toxicol. 1995 May-Jun;15(3):167-74 

63b. Theoretical mechanistic basis of oxidants 
of methaemoglobin formation. 
Akintonwa DA 
Med Hypotheses. 2000 Feb;54(2):312-20 

64a. Design, synthesis and antimalarial activity 
of a new class of iron chelators. 
Solomon VR, Haq W, Puri SK, Srivastava K, Katti SB 
Med Chem. 2006 Mar;2(2):133-8 

64b. Heme biosynthesis by the malarial parasite. 
Import of delta-aminolevulinate dehydrase 
from the host red cell. 
Bonday ZQ, Taketani S, Gupta PD, Padmanaban G 
J Biol Chem. 1997 Aug 29;272(35):21839-46 

64c. Hemoglobin catabolism and iron utilization 
by malaria parasites. 
Rosenthal PJ, Meshnick SR 
Mol Biochem Parasitol. 1996 Dec 20;83(2):131-9 

64d. Heme metabolism of Plasmodium is a major 
antimalarial target. 
Padmanaban G, Rangarajan PN 
Biochem Biophys Res Commun. 2000 Feb 24;268(3):665-8 

64e. Iron chelators: mode of action as antimalarials. 
Cabantchik ZI, Glickstein H, Golenser J, Loyevsky M, 
Tsafack A 
Acta Haematol. 1996;95(1):70-7 

64f. The reaction of chloroperoxidase with chlorite 
and chlorine dioxide. 
Shahangian S, Hager LP 
 J Biol Chem. 1981 Jun 25;256(12):6034-40 

65a. The plant-type ferredoxin-NADP+ reductase/ferredoxin 
redox system as a possible drug target against apicomplexan 
human parasites. 
Seeber F, Aliverti A, Zanetti G 
Curr Pharm Des. 2005;11(24):3159-72 

65b. Ferredoxin-NADP(+) Reductase from Plasmodium falciparum 
Undergoes NADP(+)-dependent Dimerization and Inactivation: 
Functional and Crystallographic Analysis. 
Milani M, Balconi E, Aliverti A, Mastrangelo E, Seeber F, 
Bolognesi M, Zanetti G 
J Mol Biol. 2007 Mar 23;367(2):501-13 

65c. Cloning and Characterization of Ferredoxin and 
Ferredoxin-NADP+ Reductase from Human Malaria Parasite. 
Kimata-Ariga Y, Kurisu G, Kusunoki M, Aoki S, Sato D, 
Kobayashi T, Kita K, Horii T, Hase T 
J Biochem (Tokyo). 2007 Mar;141(3):421-428;Epub 2007 Jan 23 

65d. Reconstitution of an apicoplast-localised electron 
transfer pathway involved in the isoprenoid 
biosynthesis of Plasmodium falciparum. 
Röhrich RC, Englert N, Troschke K, Reichenberg A, Hintz M, 
Seeber F, Balconi E, Aliverti A, Zanetti G, Köhler U, 
Pfeiffer M, Beck E, Jomaa H, Wiesner J 
FEBS Lett. 2005 Nov 21;579(28):6433-8;Epub 2005 Nov 02 

65e. The plant-type ferredoxin-NADP+ reductase/ferredoxin redox 
system as a possible drug target against apicomplexan human 
parasites. 
Seeber F, Aliverti A, Zanetti G 
Curr Pharm Des. 2005;11(24):3159-72 

65f. Biogenesis of iron-sulphur clusters 
in amitochondriate and apicomplexan protists. 
Seeber F 
Int J Parasitol. 2002 Sep;32(10):1207-17 

65g. Apicomplexan parasites possess distinct nuclear-encoded, 
but apicoplast-localized, plant-type ferredoxin-NADP+ 
reductase and ferredoxin. 
Vollmer M, Thomsen N, Wiek S, Seeber F 
J Biol Chem. 2001 Feb 23;276(8):5483-90;Epub 2000 Oct 30 

66a. Superoxide dismutase as a target enzyme 
for Fe-porphyrin-induced cell death. 
Asayama S, Kasugai N, Kubota S, Nagaoka S, Kawakami H 
J Inorg Biochem. 2007 Feb;101(2):261-6 

66b. The crystal structure of superoxide dismutase 
from Plasmodium falciparum. 
Boucher IW, Brzozowski AM, Brannigan JA, Schnick C, 
Smith DJ, Kyes SA, Wilkinson AJ 
BMC Struct Biol. 2006;6:20 

66c. Identification of a mitochondrial superoxide dismutase 
with an unusual targeting sequence in Plasmodium falciparum. 
Sienkiewicz N, Daher W, Dive D, Wrenger C, Viscogliosi E, 
Wintjens R, Jouin H, Capron M, Müller S, Khalife J 
Mol Biochem Parasitol. 2004 Sep;137(1):121-32 

66d. Oxidative stress and antioxidant defenses: 
a target for the treatment of diseases caused 
by parasitic protozoa. 
Turrens JF 
Mol Aspects Med. 2004 Feb-Apr;25(1-2):211-20 

66e. Screening of Plasmodium falciparum iron superoxide 
dismutase inhibitors and accuracy of the SOD-assays. 
Soulère L, Delplace P, Davioud-Charvet E, Py S, 
Sergheraert C, Périé J, Ricard I, Hoffmann P, Dive D 
Bioorg Med Chem. 2003 Nov 17;11(23):4941-4 

66f. Superoxide dismutase in Plasmodium: a current survey. 
Dive D, Gratepanche S, Yera H, Bécuwe P, Daher W, 
Delplace P, Odberg-Ferragut C, Capron M, Khalife J 
Redox Rep. 2003;8(5):265-7 

66g. Biochemical and electron paramagnetic resonance study 
of the iron superoxide dismutase from Plasmodium falciparum. 
Gratepanche S, Ménage S, Touati D, Wintjens R, Delplace P, 
Fontecave M, Masset A, Camus D, Dive D 
Mol Biochem Parasitol. 2002 Apr 9;120(2):237-46 

66h. Cloning and characterization of iron-containing 
superoxide dismutase from the human malaria species 
Plasmodium ovale, P. malariae and P. vivax. 
Baert CB, Deloron P, Viscogliosi E, Delgado-Viscogliosi P, 
Camus D, Dive D 
Parasitol Res. 1999 Dec;85(12):1018-24 

66i. The role of superoxide dismutation in malaria parasites. 
Schwartz E, Samuni A, Friedman I, Hempelmann E, Golenser J 
Inflammation. 1999 Aug;23(4):361-70 

66j. Characterization of iron-dependent endogenous 
superoxide dismutase of Plasmodium falciparum. 
Bécuwe P, Gratepanche S, Fourmaux MN, Van Beeumen J, 
Samyn B, Mercereau-Puijalon O, Touzel JP, Slomianny C, 
Camus D, Dive D 
Mol Biochem Parasitol. 1996 Feb-Mar;76(1-2):125-34 

66k. Subcellular distribution of superoxide dismutase and 
catalase in human malarial parasite Plasmodium vivax. 
Sharma A 
Indian J Exp Biol. 1993 Mar;31(3):275-7 

66L. Presence of an endogenous superoxide dismutase 
activity in three rodent malaria species. 
Bécuwe P, Slomianny C, Camus D, Dive D 
Parasitol Res. 1993;79(5):349-52 

66m. Oxidant defense enzymes of Plasmodium falciparum. 
Fairfield AS, Abosch A, Ranz A, Eaton JW, Meshnick SR 
Mol Biochem Parasitol. 1988 Jul;30(1):77-82 

67a. Structural metal dependency of the arginase 
from the human malaria parasite Plasmodium falciparum. 
Müller IB, Walter RD, Wrenger C
Biol Chem. 2005 Feb;386(2):117-26 

TARGETING POLYAMINES

Other metabolites necessary for survival and growth in tumors, bacteria and parasites are the polyamines. [68a-68d] Plasmodia quit growing and die, when polyamines are lacking [69a-69k], or when their functions are blocked [70a-70L]. Polyamines are also sensitive to oxidation and can be eliminated by strong oxidants. When oxidized, polyamines are converted to aldehydes, which are deadly to parasites and to tumors. [71a-71e] Chlorine dioxide (ClO2) is known to be especially reactive against secondary amines. [72a] This includes spermine and spermidine the two main biologically important polyamines. Thus any procedure which is successful to oxidize both thiols and polyamines does quadruple damage to the pathogen: 1) oxidation of the thiol ornithine decarboxylase inhibits polyamine synthesis; 2) oxidation of the thiol S-adenosyl-L-methionine decarboxylase also inhibits polyamine synthesis; (see references below and in "Targeting Thiols" above) 3) oxidation of the secondary amines spermidine and spermine depletes polyamine supplies; 4) the products of polyamine oxidation are toxic aldehydes.

References:

68a. Targeting enzymes involved in spermidine metabolism 
of parasitic protozoa--a possible new strategy 
for anti-parasitic treatment. 
Kaiser A, Gottwald A, Maier W, Seitz HM 
Parasitol Res. 2003 Dec;91(6):508-16 

68b. Cellular polyamine profile of the phyla Dinophyta, 
Apicomplexa, Ciliophora, Euglenozoa, Cercozoa and 
Heterokonta. 
Hamana K, Sakamoto A, Nishina M, Niitsu M 
J Gen Appl Microbiol. 2004 Oct;50(5):297-303 

68c. Diamine derivatives with antiparasitic activities. 
Labadie GR, Choi SR, Avery MA 
Bioorg Med Chem Lett. 2004 Feb 9;14(3):615-9 

68d. Spermidine metabolism in parasitic protozoa--
a comparison to the situation in prokaryotes, viruses, 
plants and fungi. 
Kaiser AE, Gottwald AM, Wiersch CS, Maier WA, Seitz HM 
Folia Parasitol (Praha). 2003 Mar;50(1):3-18 

69a. Polyamines in the cell cycle of the malarial parasite 
Plasmodium falciparum. 
Bachrach U, Abu-Elheiga L, Assaraf YG, Golenser J, Spira DT 
Adv Exp Med Biol. 1988;250:643-50 

69b. Polyamine synthesis and salvage pathways 
in the malaria parasite Plasmodium falciparum.
Ramya TN, Surolia N, Surolia A 
Biochem Biophys Res Commun. 2006 Sep 22;348(2):579-84 

69c. The spermidine synthase of the malaria parasite 
Plasmodium falciparum: molecular and biochemical 
characterisation of the polyamine synthesis enzyme. 
Haider N, Eschbach ML, Dias Sde S, Gilberger TW, Walter RD, 
Lüersen K 
Mol Biochem Parasitol. 2005 Aug;142(2):224-36 

69d. Targeting malaria with polyamines. 
Geall AJ, Baugh JA, Loyevsky M, Gordeuk VR, Al-Abed Y, 
Bucala R 
Bioconjug Chem. 2004 Nov-Dec;15(6):1161-5 

69e. The Plasmodium falciparum bifunctional ornithine 
decarboxylase, S-adenosyl-L-methionine decarboxylase, 
enables a well balanced polyamine synthesis without 
domain-domain interaction. 
Wrenger C, Luersen K, Krause T, Muller S, Walter RD 
J Biol Chem. 2001 Aug 10;276(32):29651-6 

69f. Effect of polyamines on the activity of malarial 
alpha-like DNA polymerase. 
Bachrach U, Abu-Elheiga L 
Eur J Biochem. 1990 Aug 17;191(3):633-7 

69g. Plasmodium falciparum: purification, properties, 
and immunochemical study of ornithine decarboxylase, 
the key enzyme in polyamine biosynthesis. 
Assaraf YG, Kahana C, Spira DT, Bachrach U 
Exp Parasitol. 1988 Oct;67(1):20-30 

69h. Polyamines in the cell cycle of the malarial parasite 
Plasmodium falciparum. 
Bachrach U, Abu-Elheiga L, Assaraf YG, Golenser J, 
Spira DT 
Adv Exp Med Biol. 1988;250:643-50 

69i. Effect of polyamine depletion on macromolecular 
synthesis of the malarial parasite, Plasmodium 
falciparum, cultured in human erythrocytes. 
Assaraf YG, Abu-Elheiga L, Spira DT, Desser H, Bachrach U 
Biochem J. 1987 Feb 15;242(1):221-6 

69j. Polyamine levels and the activity of their 
biosynthetic enzymes in human erythrocytes infected 
with the malarial parasite, Plasmodium falciparum. 
Assaraf YG, Golenser J, Spira DT, Bachrach U 
Biochem J. 1984 Sep 15;222(3):815-9 

69k. Plasmodium berghei: inhibitors of ornithine 
decarboxylase block exoerythrocytic schizogony. 
Hollingdale MR, McCann PP, Sjoerdsma A 
Exp Parasitol. 1985 Aug;60(1):111-7 

70a. 3-Aminooxy-1-aminopropane and derivatives have an 
antiproliferative effect on cultured Plasmodium falciparum 
by decreasing intracellular polyamine concentrations. 
Das Gupta R, Krause-Ihle T, Bergmann B, Müller IB, 
Khomutov AR, Müller S, Walter RD, Lüersen K 
Antimicrob Agents Chemother. 2005 Jul;49(7):2857-64 

70b. Antimalarial effect of agmatine on Plasmodium 
berghei K173 strain. 
Su RB, Wei XL, Liu Y, Li J 
Acta Pharmacol Sin. 2003 Sep;24(9):918-22 

70c. Antiplasmodial activity of a series of 
1,3,5-triazine-substituted polyamines. 
Klenke B, Barrett MP, Brun R, Gilbert IH 
J Antimicrob Chemother. 2003 Aug;52(2):290-3 

70d. Effect of drugs inhibiting spermidine biosynthesis 
and metabolism on the in vitro development of Plasmodium 
falciparum. 
Kaiser A, Gottwald A, Wiersch C, Lindenthal B, Maier W, 
Seitz HM 
Parasitol Res. 2001 Nov;87(11):963-72 

70e. Polyamine metabolism in various tissues during 
pathogenesis of chloroquine-susceptible and resistant 
malaria. 
Mishra M, Chandra S, Pandey VC, Tekwani BL 
Cell Biochem Funct. 1997 Dec;15(4):229-35 

70f. Combined action of inhibitors of S-adenosylmethionine 
decarboxylase with an antimalarial drug, chloroquine, 
on Plasmodium falciparum. 
Das B, Gupta R, Madhubala R 
J Eukaryot Microbiol. 1997 Jan-Feb;44(1):12-7 

70g. Combined action of inhibitors of polyamine biosynthetic 
pathway with a known antimalarial drug chloroquine on 
Plasmodium falciparum. 
Das B, Gupta R, Madhubala R 
Pharmacol Res. 1995 Mar-Apr;31(3-4):189-93 

70h. Irreversible inhibition of S-adenosylmethionine 
decarboxylase in Plasmodium falciparum-infected 
erythrocytes: growth inhibition in vitro. 
Wright PS, Byers TL, Cross-Doersen DE, McCann PP, 
Bitonti AJ 
Biochem Pharmacol. 1991 Jun 1;41(11):1713-8 

70i. Antimalarial polyamine analogues. 
Edwards ML, Stemerick DM, Bitonti AJ, Dumont JA, 
McCann PP, Bey P, Sjoerdsma A 
J Med Chem. 1991 Feb;34(2):569-74 

70j. Plasmodium falciparum and Plasmodium berghei: 
effects of ornithine decarboxylase inhibitors 
on erythrocytic schizogony. 
Bitonti AJ, McCann PP, Sjoerdsma A 
Exp Parasitol. 1987 Oct;64(2):237-43 

70k. Ornithine decarboxylase of Plasmodium falciparum: 
a peak-function enzyme and its inhibition by chloroquine. 
Königk E, Putfarken B 
Trop Med Parasitol. 1985 Jun;36(2):81-4 

70L. Ornithine decarboxylase inhibition and 
the malaria-infected red cell: 
a model for polyamine metabolism and growth.
Whaun JM, Brown ND 
J Pharmacol Exp Ther. 1985 May;233(2):507-11 

71a. Polyamine oxidase in human retroplacental serum 
inhibits the growth of Plasmodium falciparum. 
Egan JE, Haynes JD, Brown ND, Eisemann CS 
Am J Trop Med Hyg. 1986 Sep;35(5):890-7 

71b. The effect of purified aminoaldehydes produced 
by polyamine oxidation on the development in vitro 
of Plasmodium falciparum in normal and 
glucose-6-phosphate-dehydrogenase-deficient erythrocytes. 
Morgan DM, Bachrach U, Assaraf YG, Harari E, Golenser J 
Biochem J. 1986 May 15;236(1):97-101 

71c. Polyamine oxidase-mediated intraerythrocytic 
killing of Plasmodium falciparum: evidence against 
the role of reactive oxygen metabolites. 
Rzepczyk CM, Saul AJ, Ferrante A 
Infect Immun. 1984 Jan;43(1):238-44 

71d. Polyamine oxidase mediates intra-erythrocytic 
death of Plasmodium falciparum. 
Ferrante A, Rzepczyk CM, Allison AC 
Trans R Soc Trop Med Hyg. 1983;77(6):789-91 

71e. Reactive oxygen and nitrogen intermediates and products 
from polyamine degradation are Babesiacidal in vitro. 
Johnson WC, Cluff CW, Goff WL, Wyatt CR 
Ann N Y Acad Sci. 1996 Jul 23;791:136-47 

72a. Chlorine Dioxide: Chemical and Physical Properties. 
Rosenblatt DH, pp 332-343, 338 
Products of Chlorine Dioxide Treatment of Organic Materials 
in Water. 
Stevens AA, pp 383-395, 388 
Ozone/Chlorine Dioxide Oxidation Products of Organic Materials. 
Rice RG, Cotruvo JA editors, 
International Ozone Institute & USEPA, 
Ozone Press International, 1978 

TARGETING PURINES

Purines are essential to many life processes. These molecules have a double ring structure. The rings are heterocyclic being composed of both carbon and nitrogen. Their nitrogen atoms are vulnerable to reaction with chlorine dioxide. [73a] Examples of important biologic purines are xanthine, hypoxanthine, inosine, guanine and adenine. Guanine and adenine are essential components of DNA and RNA necessary for all genetic functions and for all protein syntheses. Adenine is an essential component of the cofactors NADH, NADPH, FAD and ATP, necessary for many metabolic functions including oxidation-reduction and energy metabolism. Any purines lost by chlorine dioxide exposure can be readily replaced by host cells. [74a] Plasmodia and other apicomplexae are uniquely vulnerable to purine deficiency as they lack the enzymes necessary to produce purines for themselves [75a,75b,75c]. Instead these must be scavenged from host cells and imported across the plasma membranes of the parasite cells. [76a-76i] Drugs are under development to inhibit purine utilization by Plasmodia and are already showing signs of success. [77a-77g] Temporarily destroying some of the purines in the blood as should occur upon brief exposure to chlorine dioxide in vivo is probably an additional stress that Plasmodia cannot tolerate.

References:

73a. Chlorine dioxide oxidation of guanosine 5'-monophosphate. 
Napolitano MJ, Stewart DJ, Margerum DW 
Chem Res Toxicol. 2006 Nov;19(11):1451-8 

74a. Transfer of purines from liver to erythrocytes. 
In vivo and in vitro studies. 
Konishi Y, Ichihara A 
J Biochem (Tokyo). 1979 Jan;85(1):295-301 

75a. Nucleoside transport as a potential target 
for chemotherapy in malaria. 
Baldwin SA, McConkey GA, Cass CE, Young JD 
Curr Pharm Des. 2007;13(6):569-80 

75b. Xanthine oxidase inhibits growth of Plasmodium 
falciparum in human erythrocytes in vitro. 
Berman PA, Human L, Freese JA 
J Clin Invest. 1991 Dec;88(6):1848-55 

75c. Hypoxanthine depletion induced by xanthine oxidase 
inhibits malaria parasite growth in vitro. 
Berman PA, Human L 
Adv Exp Med Biol. 1991;309A:165-8 

76a. Molecules targeting the purine salvage pathway 
in Apicomplexan parasites. 
Ghérardi A, Sarciron ME 
Trends Parasitol. 2007 Aug;23(8):384-9 

76b. Nucleoside transport as a potential target 
for chemotherapy in malaria. 
Baldwin SA, McConkey GA, Cass CE, Young JD 
Curr Pharm Des. 2007;13(6):569-80 

76c. The plasma membrane permease PfNT1 is essential 
for purine salvage in the human malaria parasite 
Plasmodium falciparum. 
El Bissati K, Zufferey R, Witola WH, Carter NS, Ullman B, 
Ben Mamoun C 
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9286-91 

76d. Purine metabolism by the avian malarial parasite 
Plasmodium lophurae. 
Yamada KA, Sherman IW 
Mol Biochem Parasitol. 1981 Aug;3(4):253-64 

76e. Purine metabolism during continuous erythrocyte 
culture of human malaria parasites (P. falciparum). 
Webster HK, Whaun JM 
Prog Clin Biol Res. 1981;55:557-73 

76f. Purine base and nucleoside uptake 
in Plasmodium berghei and host erythrocytes. 
Hansen BD, Sleeman HK, Pappas PW 
J Parasitol. 1980 Apr;66(2):205-12 

76g. Comparison of tritiated hypoxanthine, adenine and 
adenosine for purine-salvage incorporation into nucleic 
acids of the malarial parasite, Plasmodium berghei. 
Van Dyke K 
Tropenmed Parasitol. 1975 Jun;26(2):232-8 

76h. Purine uptake and utilization by the avian malaria 
parasite Plasmodium lophurae. 
Tracy SM, Sherman IW 
J Protozool. 1972 Aug;19(3):541-9 

76i. [Incorporation of exogenous adenosine and 
hypoxanthine in the nucleic acids of malaria parasites 
(Plasmodium berghei and Plasmodium vinckei)] 
Büngener W 
Z Parasitenkd. 1968;31(1):1 [Article in German] 

77a. Targeting purine and pyrimidine metabolism in human 
apicomplexan parasites. 
Hyde JE 
Curr Drug Targets. 2007 Jan;8(1):31-47 

77b. Purine-less death in Plasmodium falciparum induced 
by immucillin-H, a transition state analogue 
of purine nucleoside phosphorylase. 
Kicska GA, Tyler PC, Evans GB, Furneaux RH, Schramm VL, 
Kim K 
J Biol Chem. 2002 Feb 1;277(5):3226-31 

77c. Structure-activity relationships and inhibitory effects 
of various purine derivatives on the in vitro growth of 
Plasmodium falciparum. 
Harmse L, van Zyl R, Gray N, Schultz P, Leclerc S, 
Meijer L, Doerig C, Havlik I 
Biochem Pharmacol. 2001 Aug 1;62(3):341-8 

77d. In vitro susceptibilities of Plasmodium falciparum 
to compounds which inhibit nucleotide metabolism. 
Queen SA, Jagt DL, Reyes P 
Antimicrob Agents Chemother. 1990 Jul;34(7):1393-8 

77e. Synthesis of adenosine nucleotides from hypoxanthine 
by human malaria parasites (Plasmodium falciparum) 
in continuous erythrocyte culture: 
inhibition by hadacidin but not alanosine. 
Webster HK, Whaun JM, Walker MD, Bean TL 
Biochem Pharmacol. 1984 May 1;33(9):1555-7 

77f. Hypoxanthine metabolism by human malaria 
infected erythrocytes: focus for the design 
of new antimalarial drugs. 
Webster HK, Wiesmann WP, Walker MD, Bean T, Whaun JM 
Adv Exp Med Biol. 1984;165 Pt A:219-23 

77g. Antimalarial properties of bredinin. 
Prediction based on identification of differences 
in human host-parasite purine metabolism. 
Webster HK, Whaun JM 
J Clin Invest. 1982 Aug;70(2):461-9 

TARGETING PROTEINS

Chlorine dioxide (ClO2) is highly reactive with thiols, phenols, secondary amines and tertiary amines. Therefore, proteins composed of amino acids which present these reactive groups are vulnerable to oxidation by this agent. Proteins which present residue(s) of the amino acid L-cysteine are discussed above under TARGETING THIOLS. L-tyrosine presents a phenol group and is therefore similarly vulnerable. L-tryptophan and L-histidine present secondary amino groups which are also especially reactive with chlorine dioxide. [78a-78d]

References:

78a. Denaturation of Protein by Chlorine Dioxide: 
Oxidative Modification of Tryptophan and Tyrosine Residues. 
Ogata N 
Biochemistry. 2007 Mar 31 

78b. Chlorine dioxide oxidations of tyrosine, 
N-acetyltyrosine, and dopa. 
Napolitano MJ, Green BJ, Nicoson JS, Margerum DW 
Chem Res Toxicol. 2005 Mar;18(3):501-8 

78c. Reaction of chlorine dioxide with amino acids 
and peptides: kinetics and mutagenicity studies. 
Tan HK, Wheeler WB, Wei CI 
Mutat Res. 1987 Aug;188(4):259-66 

78d. Reactions of aqueous chlorine dioxide 
with amino acids found in water. 
Taymaz K, Williams DT, Benoit FF 
Bull Environ Contam Toxicol. 1979 Nov;23(4-5):456-63 

SAFETY ISSUES

A remaining concern is safety. So far, at least anecdotally, the dosages of chlorine oxides as administered orally per Jim Humble's protocol have produced no definite toxicity. Some have taken this as often as 1 to 3 times weekly and on the surface seem to suffer no ill effects. To be certain if this is safe more research is warranted for such long term or repeated use. The concern is that too much or too frequent administration of oxidants could excessively deplete the body's reductants and promote oxidative stress. One useful way to monitor this may be to periodically check methemoglobin levels in frequent users. Sodium chlorite, as found in municipal water supplies after disinfection by chorine dioxide, has been studied and proven safe. [79a-79j] Animal studies using much higher oral or topical doses have proven relatively safe. [80a-80t] In a suicide attempt 10g of sodium chlorite taken orally caused nearly fatal kidney failure and refractory methemoglobinemia. [81a] Inhalation or aerosol exposure to chlorine dioxide gas is highly irritating and generally not recommended. [82a-82g] Special precautions must be employed in cases of glucose-6- phosphate-dehydrogenase deficiency disease, as these patients are especially sensitive to oxidants of all kinds. [83a-83g] Nevertheless, oral acidified sodium chlorite solutions might even be found safe [84a,84b] and effective in them, but probably will need to be administered at lower doses.

References:

79a. Controlled clinical evaluations of chlorine dioxide, 
chlorite and chlorate in man. 
Lubbers JR, Chauan S, Bianchine JR 
Environ Health Perspect. 1982 Dec;46:57-62 

79b. Toxicological Review of Chlorine Dioxide and Chlorite. 
Integrated Risk Information System, 
EPA/635/R-00/007, September 2000 

79c. Toxicological Profile for Chlorine Dioxide and Chlorite. 
Agency for Toxic Substances and Disease Registry, 
US Dept. Health and Human Services, September 2004 

79d. Chlorite and chlorate in drinking-water. Background document 
for preparation of WHO Guidelines for drinking-water quality. 
WHO/SDE/WSH/03.04/86, 
Geneva, World Health Organization, 2000 

79e. Chlorine dioxide and hemodialysis. 
Smith RP, Willhite CC 
Regul Toxicol Pharmacol. 1990 Feb;11(1):42-62 

79f. Effect of chlorine dioxide water disinfection on 
hematologic and serum parameters of renal dialysis patients. 
Ames RG, Stratton JW 
Arch Environ Health. 1987 Sep-Oct;42(5):280-5 

79g. The effects of chronic administration of chlorine dioxide, 
chlorite and chlorate to normal healthy adult male volunteers. 
Lubbers JR, Chauhan S, Miller JK, Bianchine JR 
J Environ Pathol Toxicol Oncol. 1984 Jul;5(4-5):229-38 

79h. Effects of the acute rising dose administration 
of chlorine dioxide, chlorate and chlorite to normal 
healthy adult male volunteers. 
Lubbers JR, Bianchine JR.
J Environ Pathol Toxicol Oncol. 1984 Jul;5(4-5):215-28 

79i. Controlled clinical evaluations of chlorine dioxide, 
chlorite and chlorate in man. 
Lubbers JR, Chauhan S, Bianchine JR 
Fundam Appl Toxicol. 1981 Jul-Aug;1(4):334-8 

79j. Acute and chronic toxicity of chlorine dioxide (ClO2) 
and chlorite (ClO2-) to rainbow trout (Oncorhynchus mykiss). 
Svecevicius G, Syvokiene J, Stasiunaite P, Mickeniene L 
Environ Sci Pollut Res Int. 2005 Sep;12(5):302-5 

80a. The effects of chlorine dioxide and sodium chlorite 
on erythrocytes of A/J and C57L/J mice. 
Moore GS, Calabrese EJ 
J Environ Pathol Toxicol. 1980 Sep;4(2-3):513-24 

80b. Subchronic toxicity of chlorine dioxide and related 
compounds in drinking water in the nonhuman primate. 
Bercz JP, Jones L, Garner L, Murray D, Ludwig DA, Boston J 
Environ Health Perspect. 1982 Dec;46:47-55 

80c. Oxidative damage to the erythrocyte induced 
by sodium chlorite, in vivo. 
Heffernan WP, Guion C, Bull RJ 
J Environ Pathol Toxicol. 1979 Jul-Aug;2(6):1487-99 

80d. Acute and chronic toxicity of chlorine dioxide (ClO2) 
and chlorite (ClO2-) to rainbow trout (Oncorhynchus mykiss). 
Svecevicius G, Syvokiene J, StasiÅ­naite P, Mickeniene L 
Environ Sci Pollut Res Int. 2005 Sep;12(5):302-5 

80e. The kinetics of chlorite and chlorate in rats. 
Abdel-Rahman MS, Couri D, Bull RJ 
J Environ Pathol Toxicol Oncol. 1985 Sep-Oct;6(1):97-103 

80f. Teratologic evaluation of Alcide liquid 
in rats and mice. I. 
Skowronski GA, Abdel-Rahman MS, Gerges SE, Klein KM 
J Appl Toxicol. 1985 Apr;5(2):97-103 

80g. Effects of Alcide gel on fetal development 
in rats and mice. II. 
Gerges SE, Abdel-Rahman MS, Skowronski GA, Von Hagen S 
J Appl Toxicol. 1985 Apr;5(2):104-9 

80h. Biochemical interactions of chlorine dioxide 
and its metabolites in rats. 
Suh DH, Abdel-Rahman MS, Bull RJ 
Arch Environ Contam Toxicol. 1984 Mar;13(2):163-9 

80i. Pharmacokinetics of Alcide, a germicidal compound in rat. 
Scatina J, Abdel-Rahman MS, Gerges SE, Alliger H 
J Appl Toxicol. 1983 Jun;3(3):150-3 

80j. Effect of chlorine dioxide and its metabolites 
in drinking water on fetal development in rats. 
Suh DH, Abdel-Rahman MS, Bull RJ 
J Appl Toxicol. 1983 Apr;3(2):75-9 

80k. Metabolism and pharmacokinetics 
of alternate drinking water disinfectants. 
Abdel-Rahman MS, Couri D, Bull RJ 
Environ Health Perspect. 1982 Dec;46:19-23 

80L. Toxicological effects of chlorine dioxide, chlorite 
and chlorate. 
Couri D, Abdel-Rahman MS, Bull RJ 
Environ Health Perspect. 1982 Dec;46:13-7 

80m. Toxicological effects of chlorite in the mouse. 
Moore GS, Calabrese EJ 
Environ Health Perspect. 1982 Dec;46:31-7 

80n. Chlorine dioxide metabolism in rat. 
Abdel-Rahman MS, Couri D, Jones JD 
J Environ Pathol Toxicol. 1979 Dec;3(1-2):421-30 

80o. Toxicity of chlorine dioxide in drinking water. 
Abdel-Rahman MS, Couri D, Bull RJ 
J Environ Pathol Toxicol Oncol. 1985 Sep-Oct;6(1):105-13 

80p. Sodium chlorite. IARC monographs on the evaluation 
of carcinogenic risks to human. (1991) 52:145-58 

80q. Study on subchronic toxicity of chlorine dioxide 
and by-products in water. 
Qingdong X, Guangming Z, Li W 
J Environ Sci Health A Tox Hazard Subst Environ Eng. 
2006;41(7):1347-53 

80r. Effects of chlorine dioxide on the developing rat brain. 
Toth GP, Long RE, Mills TS, Smith MK 
J Toxicol Environ Health. 1990 Sep;31(1):29-44 

80s. Subchronic dermal toxicity studies of Alcide Allay gel 
and liquid in rabbits. 
Abdel-Rahman MS, Skowronski GA, Turkall RM, Gerges SE, 
Kadry AR, Abu-Hadeed AH 
J Appl Toxicol. 1987 Oct;7(5):327-33 

80t. Effects of chlorine dioxide on thyroid function 
in the African green monkey and the rat. 
Harrington RM, Shertzer HG, Bercz JP 
J Toxicol Environ Health. 1986;19(2):235-42 

81a. Acute sodium chlorite poisoning associated 
with renal failure. 
Lin JL, Lim PS 
Ren Fail. 1993;15(5):645-8 

82a. First-aid reports of acute chlorine gassing among 
pulpmill workers as predictors of lung health consequences. 
SALISBURY DA, ENARSON DA, CHAN-YEUNG M, KENNEDY SM 
Dep. Med., Respiratory Div., Univ. B.C., 2775 Heather St., 
Vancouver, B.C. V5Z 3J5, Canada 
AM J IND MED; (1991) 20(1):71-82 

82b. Health Effects of Working in Pulp and Paper Mills: 
Exposure, Obstructive Airways Diseases, 
Hypersensitivity Reactions, and Cardiovascular Diseases. 
Toren K, Hagberg S, Westberg H 
American Journal of Industrial Medicine, 29(2):111-122, 
75 references, 1996. 

82c. Reactive Airways Dysfunction Syndrome Due 
to Chlorine [Dioxide]: Sequential Bronchial Biopsies 
and Functional Assessment 
Lemiere C, Malo J-L, Boutet M 
European Respiratory Journal, 1997, 10(1):241-244, 

82d. Chlorine Dioxide [regarding gas exposure] 
Concise International Chemical Assessment Document (CICAD) 
Volume 37 (2002) 20 pages 

82e. Chlorine Dioxide. HSE. Risk assessment document. 
Volume EH72/14 (2000) 61 pages. Occupational exposure. 

82f. Respiratory effects of industrial chlorine and 
chlorine dioxide exposure. [academic dissertation] 
Grenquist-Nordâen B Institute of Occupational Health, 
University of Helsinki, Haartmaninkatu 1, Helsinki, Finland, 
1983, 83pages 

82g. Chlorine dioxide. 
Commission of the European Communities, 2920 Luxembourg, 
Grand Duchy of Luxembourg; International Programme 
on Chemical Safety (IPCS), World Health Organization, 
1211 Genáeve 27, Switzerland, 1991, 2pages 

83a. The effects of chronic administration of chlorite 
to glucose-6-phosphate dehydrogenase deficient healthy 
adult male volunteers. 
Lubbers JR, Chauhan S, Miller JK, Bianchine JR 
J Environ Pathol Toxicol Oncol. 1984 Jul;5(4-5):239-42 

83b. G6PD-deficiency: a potential high-risk group 
to copper and chlorite ingestion. 
Moore GS, Calabrese EJ 
J Environ Pathol Toxicol. 1980 Sep;4(2-3):271-9 

83c. Groups at potentially high risk from chlorine dioxide 
treated water. 
Moore GS, Calabrese EJ, Ho SC 
J Environ Pathol Toxicol. 1980 Sep;4(2-3):465-70 

83d. G6PD-deficiency: a potential high-risk group 
to copper and chlorite ingestion. 
Moore GS, Calabrese EJ 
J Environ Pathol Toxicol. 1980 Sep;4(2-3):271-9 

83e. Potential health effects of chlorine dioxide 
as a disinfectant in potable water supplies. 
Moore GS, Calabrese EJ, DiNardi SR, Tuthill RW 
Med Hypotheses. 1978 Sep-Oct;4(5):481-96 

83f. [G6PD phenotype and red blood cell sensitivity 
to the oxidising action of chlorites in drinking water] 
Contu A, Bajorek M, Carlini M, Meloni P, Cocco P, Schintu M 
Ann Ig. 2005 Nov-Dec;17(6):509-18 [Article in Italian] 

83g. Effects of environmental oxidant stressors 
on individuals with a G-6-PD deficiency with particular 
reference to an animal model. 
Calabrese EJ, Moore G, Brown R 
Environ Health Perspect. 1979 Apr;29:49-55 

84a. The effects of chronic administration of chlorite 
to glucose-6-phosphate dehydrogenase deficient healthy 
adult male volunteers. 
Lubbers JR, Chauhan S, Miller JK, Bianchine JR 
J Environ Pathol Toxicol Oncol. 1984 Jul;5(4-5):239-42 

84b. [G6PD phenotype and red blood cell sensitivity 
to the oxidising action of chlorites in drinking water] 
Contu A, Bajorek M, Carlini M, Meloni P, Cocco P, Schintu M 
Ann Ig. 2005 Nov-Dec;17(6):509-18 [Article in Italian] 

MORE RESEARCH

It is hoped that this overview will spark a flurry of interest, and stimulate more research into the use of acidified sodium chlorite in the treatment of malaria. The above appreciated observations need to be proven more rigorously and published [85a]. The biochemistry most likely involved suggests that other members of the phylum Apicomplexa should also be sensitive to this treatment. [86a] This phylum includes: Plasmodium, Babesia, Toxoplasma [87a], Cryptosporidium [88a], Eimeria, Theileria, Sarcocystis, Cyclospora, Isospora and Neospora. These pathogens are responsible for widespread diseases in humans, pets and cattle. Other thiol dependent parasites should also be susceptible to acidified sodium chlorite. For example Trypanosoma and Leishmania extensively utilize and cannot survive without the cofactor known as trypanothione. Each molecule of trypanothione presents 2 sulfur atoms and 5 secondary amino groups all of which are vulnerable to oxidative destruction from chlorine dioxide (ClO2). [89a-89p]Chlorine dioxide has been proven to be cidal to almost all known infectious agents in vitro using remarkably low concentrations. This includes parasites, fungi, bacteria and viruses. The experiences noted above imply that this compound is tolerable orally at effective concentrations. [90a,90b] Therefore extensive research is warranted to determine if acidified sodium chlorite is effective in treating other infections. We may be on the verge of discovering the most potent and broad spectrum antimicrobial agent yet known. Special thanks go to Jim Humble for his willingness to share his discovery with the world.

by Thomas Lee Hesselink, MD

References:

85a. Estimation of the total parasite biomass in acute 
falciparum malaria from plasma PfHRP2. 
Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, 
Silamut K, Chotivanich K, Newton PN, Pitisuttithum P, 
Smithyman AM, White NJ, Day NP 
PLoS Med. 2005 Aug;2(8):e204;Epub 2005 Aug 23 
Erratum in: PLoS Med. 2005 Oct;2(10):390 
Comment in: PLoS Med. 2006 Jan;3(1):e68; Author reply e69. 

86a. Current status and progresses made in malaria chemotherapy. 
Liñares GE, Rodriguez JB 
Curr Med Chem. 2007;14(3):289-314 

87a. Toxoplasma gondii: the model apicomplexan. 
Kim K, Weiss LM 
Int J Parasitol. 2004 Mar 9;34(3):423-32 

88a. Sequential inactivation of Cryptosporidium parvum 
oocysts with chlorine dioxide followed by free chlorine 
or monochloramine. 
Corona-Vasquez B, Rennecker JL, Driedger AM, Mariñas BJ 
Water Res. 2002 Jan;36(1):178-88 

89a. Characterization of an omega-class glutathione-
S-transferase from Schistosoma mansoni with 
glutaredoxin-like dehydroascorbate reductase and 
thiol transferase activities.
Girardini J, Amirante A, Zemzoumi K, Serra E 
Eur J Biochem. 2002 Nov;269(22):5512-21 

89b. Thiol-based redox metabolism of protozoan parasites. 
Muller S, Liebau E, Walter RD, Krauth-Siegel RL 
Trends Parasitol. 2003 Jul;19(7):320-8 
Comment in: Trends Parasitol. 2004 Feb;20(2):58-9 

89c. The parasite-specific trypanothione metabolism 
of trypanosoma and leishmania. 
Krauth-Siegel RL, Meiering SK, Schmidt H 
Biol Chem. 2003 Apr;384(4):539-49 

89d. The synthesis of parasitic cysteine protease 
and trypanothione reductase inhibitors. 
Chibale K, Musonda CC 
Curr Med Chem. 2003 Sep;10(18):1863-89 

89e. Glutathione inhibits the antischistosomal activity 
of artemether. 
Zhai ZL, Jiao PY, Mei JY, Xiao SH 
Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 
 2002;20(4):212-5 

89f. Schistosoma mansoni: expression and role of cysteine 
proteinases in developing schistosomula. 
Zerda KS, Dresden MH, Chappell CL 
Exp Parasitol. 1988 Dec;67(2):238-46 

89g. Mr 26,000 antigen of Schistosoma japonicum recognized 
by resistant WEHI 129/J mice is a parasite glutathione 
S-transferase. 
Smith DB, Davern KM, Board PG, Tiu WU, Garcia EG, Mitchell GF 
Proc Natl Acad Sci U S A. 1986 Nov;83(22):8703-7 
Erratum in: Proc Natl Acad Sci U S A 1987 Sep;84(18):6541 

89h. Oxidative stress and antioxidant defenses: 
a target for the treatment of diseases caused 
by parasitic protozoa. 
Turrens JF 
Mol Aspects Med. 2004 Feb-Apr;25(1-2):211-20 

89i. Antioxidant defense mechanisms in parasitic protozoa. 
Mehlotra RK 
Crit Rev Microbiol. 1996;22(4):295-314 

89j. Phenotypic analysis of trypanothione synthetase 
knockdown in the African trypanosome. 
Ariyanayagam MR, Oza SL, Guther ML, Fairlamb AH 
Biochem J. 2005 Oct 15;391(Pt 2):425-32 

89k. Gene knockdown of gamma-glutamylcysteine synthetase 
by RNAi in the parasitic protozoa Trypanosoma brucei 
demonstrates that it is an essential enzyme. 
Huynh TT, Huynh VT, Harmon MA, Phillips MA 
J Biol Chem. 2003 Oct 10;278(41):39794-800 

89L. Polyamine and thiol metabolism in Trypanosoma 
granulosum: similarities with Trypanosoma cruzi. 
Mastri C, Thorborn DE, Davies AJ, Ariyanayagam MR, 
Hunter KJ 
Biochem Biophys Res Commun. 2001 Apr 20;282(5):1177-82 

89m. Inducible resistance to oxidant stress 
in the protozoan Leishmania chagasi. 
Miller MA, McGowan SE, Gantt KR, Champion M, 
Novick SL, Andersen KA, Bacchi CJ, Yarlett N, 
Britigan BE, Wilson ME 
J Biol Chem. 2000 Oct 27;275(43):33883-9 

89n. Pharmacological approaches to antitrypanosomal 
chemotherapy. 
Croft SL 
Mem Inst Oswaldo Cruz. 1999 Mar-Apr;94(2):215-20 

89o. Fate of soluble methionine in African trypanosomes: 
effects of metabolic inhibitors. 
Bacchi CJ, Goldberg B, Garofalo-Hannan J, Rattendi D, 
Lyte P, Yarlett N 
Biochem J. 1995 Aug 1;309 ( Pt 3):737-43 

89p. In vivo effects of difluoromethylornithine 
on trypanothione and polyamine levels 
in bloodstream forms of Trypanosoma brucei. 
Fairlamb AH, Henderson GB, Bacchi CJ, Cerami A 
Mol Biochem Parasitol. 1987 Jun;24(2):185-91 

90a. A Possible Solution to the Malaria Problem?
Humble J 
Libertarian Times, May 9, 2005 

90b. The Miracle Mineral Supplement of the 21st Century. 
Humble JV 
www.miraclemineral.org, 2nd Edition (2007) 

The End